Contaminant acrylamide in food: toxicity, detection methods, mitigation measures and risk assessment for humans
Chaoming Huang 1
,   Shisheng Jiang 1  
,   Yantianyu Yang 1
,   Shuhan Gao 1
,   Zihan Lin 2
,   Wei Gu 2
,   Tingdong Yan 2
,   Yi Cai 1  
More details
Hide details
Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University, Guangzhou, 511436, PR China
School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
Yi Cai   

Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University, Guangzhou, 511436, PR China
Submission date: 2021-08-14
Final revision date: 2021-09-15
Acceptance date: 2021-09-18
Online publication date: 2021-09-19
Publication date: 2021-10-05
NRFHH 2021;1(2):98–109
Food safety is related to all aspects of human life, and the quality of food has a profound impact on people's lives and health. Acrylamide is a chemical pollutant produced by the Maillard reaction in baked goods such as potato chips, bread, and cookies. Studies have shown that acrylamide has neurotoxicity, carcinogenicity, reproductive toxicity, genotoxicity, and hepatosplenic toxicity in humans. However, the carcinogenicity of acrylamide in humans is still controversial, and it is unclear whether there is a significant correlation between human exposure to acrylamide and cancer incidence. This review aims to explore the latest research on the human health hazards of acrylamide and prevent or reduce the hazards of acrylamide to humans by detection methods, risk assessment, and mitigation measures to ensure people's food safety.
Abt, E., Robin, L.P., McGrath, S., Srinivasan, J., DiNovi, M., Adachi, Y., Chirtel, S., 2019. Acrylamide levels and dietary exposure from foods in the United States, an update based on 2011-2015 data. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment. 36(10), 1475–1490. 10.1080/19440049.2019.1637548.
Adani, G., Filippini, T., Wise, L.A., Halldorsson, T.I., Blaha, L., Vinceti, M., 2020. Dietary Intake of acrylamide and Risk of Breast, Endometrial, and Ovarian Cancers: A Systematic Review and Dose-Response Meta-analysis. Cancer Epidemiology, Biomarkers & Prevention. 29(6), 1095–1106.
Aldawood, N., Alrezaki, A., Alanazi, S., Amor, N., Alwasel, S., Sirotkin, A., Harrath, A.H., 2020. Acrylamide impairs ovarian function by promoting apoptosis and affecting reproductive hormone release, steroidogenesis and autophagy-related genes: An in vivo study. Ecotoxicology and Environmental Safety. 197, 110595.
Andačić, I.M., Tot, A., Ivešić, M., Krivohlavek, A., Thirumdas, R., Barba, F.J., Sabolović, M.B., Kljusurić, J.G., Brnčić, S.R., 2020a. Exposure of the Croatian adult population to acrylamide through bread and bakery products. Food Chemistry. 322, 126771. https://
Asnaashari, M., Kenari, R.E., Farahmandfar, R., Abnous, K., Tagh- disi, S.M., 2019. An electrochemical biosensor based on hemoglobin- oligonucleotides-modified electrode for detection of acrylamide in potato fries. Food Chemistry. 271, 54–61. j.foodchem.2018.07.150.
Basaran, B., Aydin, F., 2020. Estimating the acrylamide exposure of adult individuals from coffee: Turkey. Food Additives & Contaminants: Part A. 37(12), 2051–2060.
Bertuzzi, T., Martinelli, E., Mulazzi, A., Rastelli, S., 2020. Acrylamide determination during an industrial roasting process of coffee and the influence of asparagine and low molecular weight sugars. Food Chemistry. 303, 125372.
Bin-Jumah, M., Abdel-Fattah, A.-F.M., Saied, E.M., El-Seedi, H.R., Abdel-Daim, M.M., 2021. Acrylamide-induced peripheral neuropa- thy: manifestations, mechanisms, and potential treatment modalities. Environmental Science and Pollution Research. 28(11), 13031– 13046.
Bo, N., Yilin, H., Chaoyue, Y., Lu, L., Yuan, Y., 2020. Acrylamide induces NLRP3 inflammasome activation via oxidative stress- and endoplasmic reticulum stress-mediated MAPK pathway in HepG2 cells. Food and Chemical Toxicology. 145, 111679. 10.1016/j.fct.2020.111679.
Branciari, R., Roila, R., Ranucci, D., Altissimi, M.S., Mercuri, M.L., Haouet, N.M., 2020. Estimation of acrylamide exposure in Italian schoolchildren consuming a canteen menu: health concern in three age groups. International Journal of Food Sciences and Nutrition. 71(1), 122–131.
Chen, X., Jia, W., Wang, Q., Han, J., Cheng, J., Zeng, W., Zhao, Q., Zhang, Y., Zhang, Y., 2020. Protective effect of a dietary flavonoid- rich antioxidant from bamboo leaves against internal exposure to acrylamide and glycidamide in humans. Food & Function. 11(8), 7000–7011.
Chu, P.L., Liu, H.S., Wang, C., Lin, C.Y., 2003. Association between acrylamide exposure and sex hormones in males: NHANES. PLoS One. 15(6), 234622–234622.
da Cunha, M.C., dos Santos Aguilar, J.G., de Melo, R.R., Naga- matsu, S.T., Ali, F., de Castro, R.J.S., Sato, H.H., 2019. Fungal L-asparaginase: Strategies for production and food applications. Food Research International. 126, 108658. j.foodres.2019.108658.
Desmarchelier, A., Hamel, J., Delatour, T., 2020. Sources of overestima- tion in the analysis of acrylamide-in coffee by liquid chromatography mass spectrometry. Journal of Chromatography A. 1610, 460566.
Donmez, D.B., Kacar, S., Bagci, R., Sahinturk, V., 2020. Protective effect of carnosic acid on acrylamide-induced liver toxicity in rats: Mechanistic approach over Nrf2-Keap1 pathway. Journal of Biochemical and Molecular Toxicology. 34, e22524. 10.1002/jbt.22524.
Eslamizad, S., Kobarfard, F., Tsitsimpikou, C., Tsatsakis, A., Tabib, K., Yazdanpanah, H., 2019. Health risk assessment of acrylamide in bread in Iran using LC-MS/MS. Food and Chemical Toxicology. 126, 162– 168.
Esposito, F., Fasano, E., Vivo, D., Velotto, A., Sarghini, S., Cirillo, F., T., 2020. Processing effects on acrylamide content in roasted coffee production. Food Chemistry. 319, 126550–126550. 10.1016/j.foodchem.2020.126550.
Faria, M., Prats, E., Gómez-Canela, C., Hsu, C.-Y., II, M.A.A., Bedrossiantz, J., Orozco, M., Garcia-Reyero, N., Ziv, T., Ben-Lulu, S., Admon, A., Gómez-Oliván, L.M., Raldúa, D., 2019. Therapeutic potential of N-acetylcysteine in acrylamide acute neurotoxicity in adult zebrafish. Scientific Reports. 10(1), 16467.
Galuch, M.B., Magon, T.F.S., Silveira, R., Nicácio, A.E., Pizzo, J.S., Bonafe, E.G., Maldaner, L., Santos, O.O., Visentainer, J.V., 2019. Determination of acrylamide in brewed coffee by dispersive liquid-liquid microextraction (DLLME) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Chemistry. 282, 120–126.
Goerke, K., Ruenz, M., Lampen, A., Abraham, K., Bakuradze, T., Eisenbrand, G., Richling, E., 2019. Biomonitoring of nutritional acrylamide intake by consumers without dietary preferences as compared to vegans. Archives of Toxicology. 93(4), 987–996. https://
Hsu, C.N., Hou, C.Y., Lu, P.C., Chang-Chien, G.P., Lin, S., Tain, Y.L., 2020. Association between acrylamide Metabolites and Cardiovascu- lar Risk in Children With Early Stages of Chronic Kidney Disease. International Journal of Molecular Sciences. 21(16), 5855. https://
Ibrahim, M.A., Ibrahem, M.D., 2020. Acrylamide-induced hematotoxi- city, oxidative stress, and DNA damage in liver, kidney, and brain of catfish (Clarias gariepinus). Environmental Toxicology. 35(2), 300– 308.
Ivanski, F., de Oliveira, V.M., de Oliveira, I.M., de Araújo Ramos, A.T., de Oliveira Tonete, S.T., de Oliveira Hykavei, G., Bargi- Souza, P., Schiessel, D.L., Martino-Andrade, A.J., Romano, M.A., Romano, R.M., 2020. Prepubertal acrylamide exposure causes dose- response decreases in spermatic production and functionality with modulation of genes involved in the spermatogenesis in rats. Toxicology. 436, 152428. j.tox.2020.152428.
Jiang, F., Teng, M., Zhu, Y.X., Li, Y.J., 2020. No association between dietary acrylamide and renal cell carcinoma: an updated meta- analysis. Journal of the Science of Food and Agriculture. 100(7), 3071–3077.
Jiang, G., Lei, A., Chen, Y., Yu, Q., Xie, J., Yang, Y., Yuan, T., Su, D., 2021. The protective effects of the Ganoderma atrum polysaccharide against acrylamide-induced inflammation and oxidative damage in rats. Food & Function. 12(1), 397–407. D0FO01873B.
Jozinovi´, A., Šarkanj, B., Đurđica Avckar, c, J.P.B., Šubari´c, D., c, T.C., c, J.R., Guberac, S., c, J.B., 2019. Simultaneous Determination of Acrylamide and Hydroxymethylfurfural in Extruded Products by LC- MS/MS Method. Molecules. 24(10), 1971. molecules24101971.
Kito, K., Ishihara, J., Kotemori, A., Zha, L., Liu, R., Sawada, N., Iwasaki, M., Sobue, T., Tsugane, S., 2020. Dietary Acrylamide Intake and the Risk of Pancreatic Cancer: The Japan Public Health Center- Based Prospective Study. Nutrients. 12(11), 3584–3584.
Kito, K., Ishihara, J., Yamamoto, J., Hosoda, T., Kotemori, A., Takachi, R., Nakamura, K., Tanaka, J., Yamaji, T., Shimazu, T., Ishii, Y., Sawada, N., Iwasaki, M., Iso, H., Sobue, T., Tsugane, S., 2020. Variations in the estimated intake of acrylamide from food in the Japanese population. Nutrition Journal. 19(1), 17. 10.1186/s12937-020-00534-y.
Komoike, Y., Nomura-Komoike, K., Matsuoka, M., 2020. Intake of acrylamide at the dietary relevant concentration causes splenic toxicity in adult zebrafish. Environmental Research. 189, 109977. https://
Li, C., Li, C., Yu, H., Cheng, Y., Xie, Y., Yao, W., Guo, Y., Qian, H.,2021. Chemical food contaminants during food processing: sources and control. Critical Reviews in Food Science and Nutrition. 61(9), 1545–1555.
Li, J., Zhao, X., Chen, L.-J., Qian, H.-L., Wang, W.-L., Yang, C., Yan, X.-P., 2019. p-Bromophenol-Enhanced Bienzymatic Chemilumines- cence Competitive Immunoassay for Ultrasensitive Determination of Aflatoxin B1. Analytical Chemistry. 91(20), 13191–13197. https://
Liu, R., Sobue, T., Kitamura, T., Kitamura, Y., Ishihara, J., Kotemori, A., Zha, L., Ikeda, S., Sawada, N., Iwasaki, M., Tsugane, S., 2019. Dietary acrylamide Intake and Risk of Esophageal, Gastric, and Colorectal Cancer: The Japan Public Health Center-Based Prospective Study. Cancer Epidemiology, Biomarkers & Prevention. 28(9), 1461– 1468.
Liu, R., Zha, L., Sobue, T., Kitamura, T., Ishihara, J., Kotemori, A., Ikeda, S., Sawada, N., Iwasaki, M., Tsugane, S., 2020. Dietary acrylamide Intake and Risk of Lung Cancer: The Japan Public Health Center Based Prospective Study. Nutrients. 12(8), 2417.
Mesias, M., Delgado-Andrade, C., Holgado, F., Morales, F.J., 2020. Acrylamide in French fries prepared at primary school canteens. Food & Function. 11(2), 1489–1497. C9FO02482D.
Mollakhalili-Meybodi, N., Khorshidian, N., Nematollahi, A., Arab, M., 2021. Acrylamide in bread: a review on formation, health risk assess- ment, and determination by analytical techniques. Environmental Science and Pollution Research. 28(13), 15627–15645.
Nagashima, D., Zhang, L., Kitamura, Y., Ichihara, S., Watanabe, E., Zong, C., Yamano, Y., Sakurai, T., Oikawa, S., Ichihara, G., 2019. Proteomic analysis of hippocampal proteins in acrylamide-exposed Wistar rats. Archives of Toxicology. 93(7), 1993–2006.
Ou, J., Ou, J., Huang, J., Ho, C.-T., Ou, S., 2020. Interaction of acrylamide, acrolein, and 5-Hydroxymethylfurfural with Amino Acids and DNA. Journal of Agricultural and Food Chemistry. 68(18), 5039–5048.
Pan, X., Wu, X., Yan, D., Peng, C., Rao, C., Yan, H., 2018. Acrylamide- induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicology Letters. 288, 55–64.
Salimi, A., Baghal, E., Ghobadi, H., Hashemidanesh, N., Khodaparast, F., Mitochondrial, S.E., 2021. Mitochondrial, lysosomal and DNA damages induced by acrylamide attenuate by ellagic acid in human lymphocyte. PLoS One. 16(2), 247776. journal.pone.0247776.
Schouten, M.A., Tappi, S., Romani, S., 2020. Acrylamide in coffee: formation and possible mitigation strategies – a review. Critical Reviews in Food Science and Nutrition. 60(22), 3807–3821. https://
Sirot, V., Rivière, G., Leconte, S., 2019. French infant total diet study: Dietary exposure to heat-induced compounds (acrylamide, furan and polycyclic aromatic hydrocarbons) and associated health risks. 130, 308–316. https://
Sui, X., Yang, J., Zhang, G., Yuan, X., Li, W., Long, J., Luo, Y., Li, Y., Wang, Y., 2020. NLRP3 inflammasome inhibition attenuates subacute neurotoxicity induced by acrylamide in vitro and in vivo. Toxicology. 432, 152392.
Sun, G., Qu, S., Wang, S., Shao, Y., Sun, J., 2018. Taurine attenuates acrylamide-induced axonal and myelinated damage through the Akt/GSK3β-dependent pathway. International Journal of Immunopathology and Pharmacology. 32, 2058738418805322.
Wang, B., Qiu, W., Yang, S., Cao, L., Zhu, C., Ma, J., Li, W., Zhang, Z., Xu, T., Wang, X., Cheng, M., Mu, G., Wang, D., Zhou, Y., Yuan, J., Chen, W., 2020. Acrylamide Exposure and Oxidative DNA Damage, Lipid Peroxidation, and Fasting Plasma Glucose Alteration: Association and Mediation Analyses in Chinese Urban Adults. Diabetes Care. 43(7), 1479–1486. dc19-2603.
Wang, P., Ji, R., Ji, J., Chen, F., 2019. Changes of metabolites of acrylamide and glycidamide in acrylamide-exposed rats pretreated with blueberry anthocyanins extract. Food Chemistry. 274, 611–619.
Wang, Y., Wu, H., Zhang, W., Xu, W., Mu, W., 2021. Efficient control of acrylamide in French fries by an extraordinarily active and thermo-stable l-asparaginase: A lab-scale study. Food Chemistry. 360, 130046.
Wawrzyniak, R., Jasiewicz, B., 2019. Straightforward and rapid determination of acrylamide in coffee beans by means of HS- SPME/GC-MS. Food Chemistry. 301, 125264.
Wu, M.-F., Wang, Y., Li, S., Dong, X.-X., Yang, J.-Y., Shen, Y.-D.,. Wang, H., Sun, Y.-M., Lei, H.-T., Xu, Z.-L., 2019. Ultrasensitive immunosensor for acrylamide based on chitosan/SnO2-SiC hollow sphere nanochains/gold nanomaterial as signal amplification. Ana- lytica Chimica Acta. 1049, 188–195.
Yang, Y., Shen, H., Liu, T., Wen, Y., Wang, F., Guo, Y., 2021. Mitigation effects of phlorizin immersion on acrylamide formation in fried potato strips. Journal of the Science of Food and Agriculture. 101(3), 937– 946.
Yilmaz, B.O., Yildizbayrak, N., Aydin, Y., 2020. Vitamin C inhibits glycidamide-induced genotoxicity and apoptosis in Sertoli cells. Journal of Biochemical and Molecular Toxicology. 34, e22545.
Yu, D., Liu, Q., Qiao, B., Jiang, W., Zhang, L., Shen, X., Xie, L., Liu, H., Zhang, D., Yang, B., Kuang, H., 2020. Exposure to acrylamide inhibits uterine decidualization via suppression of cyclin D3/p21 and apoptosis in mice. Journal of Hazardous Materials. 388, 121785.
Yu, D., Xie, X., Qiao, B., Ge, W., Gong, L., Luo, D., Zhang, D., Li, Y., Yang, B., Kuang, H., 2019. Gestational exposure to acrylamide inhibits mouse placental development in vivo. Journal of Hazardous Materials. 367, 160–170.
Yu, S., Chen, Z., Meng, H., Chen, M., 2020. Addition of lipophilic grape seed proanthocyanidin effectively reduces acrylamide formation. J Sci Food Agric. 100(3), 1213–1219. Yue, Z., Chen, Y., Song, Y., Zhang, J., Yang, X., Wang, J., Li, L., Sun, Z., 2020. Effect of acrylamide on glucose homeostasis in female rats and its mechanisms. Food Chem Toxicol. 135, 110894. 10.1016/j.fct.2019.110894.
Zhang, L., Hara, S., Ichinose, H., Nagashima, D., Morita, K., Sakurai, T., Ichihara, S., Ichihara, G., 2020. Exposure to acrylamide decreases noradrenergic axons in rat brain. Neurotoxicology. 78, 127–133.
Zhang, Y., Wang, Q., Jia, W., Cheng, J., Zhu, L., Ren, Y., Zhang, Y., 2020. Rapid Simultaneous Determination of Cascade Metabolites of Acrylamide in Urine for Toxicokinetics Profiles and Short-Term Dietary Internal Exposure. Journal of Agricultural and Food Chem- istry. 68(24), 6748–6758.
Zhivagui, M., Ng, A.W.T., Ardin, M., Churchwell, M.I., Pandey, M., Renard, C., Villar, S., Cahais, V., Robitaille, A., Bouaoun, L., et al., 2019. Experimental and pan-cancer genome analyses reveal widespread contribution of acrylamide exposure to carcinogenesis in humans. Genome Research. 29(4), 521–531.
Zhu, F., Wang, J., Jiao, J., Zhang, Y., 2021. Exposure to acrylamide induces skeletal developmental toxicity in zebrafish and rat embryos. Environmental Pollution. 271, 116395–116395.
Zilli, S.C., Grehs, B., Carissimi, E., Pizzolato, T.M., Silva, W.L.D., Silvestri, S., 2021. Toxicity of acrylamide after degradation by conjugated (UV/H2O2) photolysis in microalgae. Environmental Science and Pollution Research. 28(28), 38085–38093.
Zong, C., Hasegawa, R., Urushitani, M., Zhang, L., Nagashima, D., Sakurai, T., Ichihara, S., Ohsako, S., Ichihara, G., 2019. Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro. Archives of Toxicology. 93(7), 2007– 2019.