Chemical characterization and insecticidal effect of Moringa oleifera L. seeds extracts on common bean weevil (Acanthoscelides obtectus Say)
More details
Hide details
Department of Plant Biology,, Phytopathology and Crop Protection Laboratory, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé-Cameroon, Cameroon
Department of Plant Biology,, Environmental Management and Plant Production Laboratory, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé-Cameroon, Cameroon
Department of Pharmaceutical Chemistry, , Faculty of Pharmacy, Dicle University, Diyarbakir, 21280, Turkey, Turkey
Department of Biology, Physiology and Biochemistry Research Laboratory, Science Faculty, Selcuk University, Campus, Konya, Turkey
Gokhan Zengin   

Department of Biology, Physiology and Biochemistry Research Laboratory, Science Faculty, Selcuk University, Campus, Konya, Turkey
Submission date: 2021-08-27
Final revision date: 2021-10-12
Acceptance date: 2021-10-13
Online publication date: 2021-10-14
Some insects cause high losses of the common bean during storage, namely, Acanthoscelides obtectus Say. Chemical insecticides are commonly used to control insects, but their overuse adversely affects the environment and consumers' health. There is, therefore, the need for an alternative control method. This study was aimed to evaluate the chemical characterization and insecticidal property of Moringa oleifera seed extract on the developmental stages of A. obtectus in stored beans. Three types of M. oleifera seed extracts, namely methanol, ethanol and acetone extracts, were used at doses of 12.5, 25 and 50 µl/ml each. HPLC-MS was used to characterize these extracts. The toxicity of extracts against the adults, the number of eggs and the viability rate of laid or emerged eggs of A. obtectus were evaluated. The results show that M. oleifera seed extract is rich in Hesperidin, Quinic acid, gallic acid, protocatechuic acid, 4-OH benzoic acid, cynaroside, isoquercitrin, cosmosiin, quercitrin, luteolin, naringenin, salicylic acid, Apigenin and Fumaric acid. The acetone extract, from day 2, showed a 100% mortality rate in all doses compared to about only 14% in the control treatment. The number of eggs laid in control (236.67) was higher than the null (0) in acetone treatment at 50 µl/ml. M. oleifera seed extracts contain chemical molecules. They significantly reduced the damage caused by A. obtectus on stored P. vulgaris grains. Therefore, they can be used as an alternative to chemicals for the protection of stored foodstuffs.
Amoroso, V.B., Mendez, A.R., Junio, H.A., Molino, R.J.E., Pescadero1, I.R., Villalobos, A.P., 2021. Characterization of a natural fungicide from an indigenous plant Tasmannia piperita (hook.f.) Miers extract: stability, metabolomics, and in silico studies. Philippine Journal of Science. 150(2), 355–370.
Anonymous., 2017. Annuaire statistique du secteur agricole du Camer- oun,. .
Anonymous., 2019. http://www.fao.org/faostat/en. Date accessed: September 2021.
Ayirezang, F.A., Azumah, B.K., Achio, S., 2020. Effects of Moringa oleifera leaves and Seeds Extracts against Food Spoilage Fungi. Advances in Microbiology. 10, 27–38. https://doi.org/10.4236/aim.20....
Baoua, I.B., Amadou, L., Abdourahmane, M., Bakoye, O., Baributsa, D., Murdock, L.L., 2015. Grain storage and insect pests of stored grain in rural Niger. Journal of Stored Products Research. 64, 8–12. https:// doi.org/10.1016/j.jspr.2015.04....
Belkebir, S., 2018. Évaluation de l’effet insecticide, sur les pucerons, de l’extrait aqueux de feuille et fleur de Moringa oleifera Lam.
Blair, M.W., Muñoz, C., Garza, R., Cardona, C., 2006. Molecular mapping of genes for resistance to the bean pod weevil (Apion godmani Wagner) in common bean. Theoretical and Applied Genetics. 112, 913–923. https://doi.org/10.1007/s00122....
Boulogne, I., Sciences du Vivant [q-bio]., 2011. Evaluation du potentiel insecticide et antifongique sur Acromyrmex octospinosus (Reich) d’une sélection de plantes à usages ethnopharmacologiques TRAMIL.. https://hal.inrae.fr/tel-02810....
Broughton, W.J., Hernandez, G., Blair, M.W., Beebe, S., Gepts, P., Vanderleyden, J., 2003. Beans (Phaseolus spp.) Model Food Legumes. Plant and Soil. 252, 55–128. https://doi.org/10.1023/A:1024....
Buśko, M., Góral, T., Ostrowska, A., Matysiak, A., Walentyn, Perkowski, J., 2014. The Effect of Fusarium Inoculation and Fungicide Application on Concentrations of Flavonoids (Apigenin, Kaempferol, Luteolin, Naringenin, Quercetin, Rutin, Vitexin) in Winter Wheat Cultivars. American Journal of Plant Sciences. 5, 3727–3736. http://dx.doi.org/10.4236/ajps....
Carpinella, C., Defago, T., Valladares, G., Palacios, M., 2003. Antifeedant and insecticide properties of alimonoid from Melia azedarach (Meliaceae) with potential use for pest management. Journal of Agricultural and Food Chemistry. 51, 369–374. https://doi.org/10.1021/jf0258....
Chacón, M.I., Pickersgill, S.B., Debouck, D.G., 2005. Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics. 110, 432–444. https://doi.org/10.1007/s00122....
Czembor, E., Stepien, L., Waskiewicz, A., 2015. Effect of environmental factors on Fusarium species and associated mycotoxins in maize grain grown in Poland. PloS One. 10, e0133644. https://doi.org/10.1371/ journal.pone.0133644.
Damerdji, A., Bouklikha, A., 2009. Effet de quatre variétés d’haricots sur la durée du cycle de développement de la bruche Acanthoscelides obtectus (coleoptera, bruchidae). Revue Ivoirienne des Sciences et Technologie. 14, 161–173.
Dang-Minh-Chanh, N., Dong-Jun, S., Hyang-Burm, L., In-Seon, K., Kil- Yong, K., Ro-Dong, P., Woo-Jin, J., 2013. Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani. Microbial Pathogenesis. 56, 8–15. https://doi.org/10.1016/ j.micpath.2013.01.001.
Dieryckx, C., Gaudin, V., Dupuy, J.W., Bonneu, M., V, G., D, J., 2015. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea . Plant Science. 6, 859. https://doi.org/10.3389/fpls.2....
Doucet, R., 1992. La Science Agricole: Climat, Sol et Population végétale du Québec. Deuxième édition revue,. , pp. 653–653.
El-Kady, A.M.A., Mohamed, A.I., Mohamady, A.H., 2010. Insecticidal activity of citric acid and its soluble powder formulations against Aphis craccivora under laboratory conditions. Egyptian Academic Journal Biological Science; F. Toxicology and pest control. 2(1), 7–12. https:// dx.doi.org/10.21608/eajbsf.201....
Ezeaku, P.I., Ndubuaku, U.M., Ndubuaku, T.C.N., Ike, E., Ike- mefuna, P., 2015. Effects of Moringa oleifera leaf extract on morphological and physiological growth of cassava and its efficacy in controlling Zonocerus variegatus. African Journal of Biotechnology. 14(32), 2494–2500. https://doi.org/10.5897/AJB201....
Guèye, M.T., Seck, D., Wathelet, J.P., Lognay, G., 2011. Lutte contre les ravageurs des stocks de céréales et de légumineuses au Sénégal et en Afrique occidentale: synthèse bibliographique. Biotechnol. Agron. Soc. Environ. 15(1), 183–194.
Hagstrum, D., W, F.P., 2014. Modern stored-product insect pest management. Journal of Plant Protection Research. 54, 205–210. https://doi.org/10.2478/jppr-2....
Ibrahim, N.D., Aliyu, S.M., 2014. Evaluation of plant seed oil and bitter leaf powder for their repellency and control of cowpea beetle (Callosobruchus maculatus Fab.) (Coleoptera: Bruchidae) in stored cowpea. Research Journal of Agriculture and Environmental Management. 3(8), 370–375.
Ilboudo, O., Bonzi, S., Tapsoba, I., Somda, I., Bonzi-Coulibaly, Y.L., 2016. In vitro antifungal activity of flavonoid diglycosides of Mentha piperita and their oxime derivatives against two cereals fungi. Comptes Rendus Chimie. 19, 857–862. https://doi.org/10.1016/j.crci....
Kopustinskiene, D.M., Jakstas, V., Savickas, Bernatoniene, J., 2020. Flavonoids as Anticancer Agents. Nutrients. 12(2), 457. https:// doi.org/10.3390/nu12020457.
Muhammad, Z., Sadia, H., Komal, R., Nasir, R., Muhammad, R., Zia- Ul-Haq, M., Vincenzo, D.F., 2013. Antioxidant potential and oil composition of Callistemon viminalis leaves. Scientific World Journal. 2013, 489071. https://doi.org/10.1155/2013/4....
Nguyen, X.H., Naing, K.W., Lee, Y.S., Moon, J.H., Lee, J.H., Kim, K.Y., 2014. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. Journal of Basic Microbiology. 54, 1–10. https://doi.org/10.1002/jobm.2....
Ola, S.M.A., 2016. Effect of salicylic acid and its mixtures with three insecticides on some cotton insect pests. Thesis of master degree,, pp. 89–89.
Oliveira, S.P.A.D., Agra-Neto, C.A., Pontual, V.E., Lima, T.D.A.,Cruz, V., Melo, C.K.D., Oliveira, R.K.D., Coelho, S.A., Fer-.
reira, B.B.C.L., Soares, A.R.A., Napoleão, L.A.L., Paiva, H.T., P, G.M., 2020. Evaluation of the insecticidal activity of Moringa oleifera seed extract and lectin (WSMoL) against Sitophilus zeamais. Journal of Stored Products Research. 87, 101615. https://doi.org/10.1016/j.jspr....
Ouedraogo, I., Sawadogo, A., &dakouo, D.C.N.R., 2016. Eval- uation de la toxicité des huiles essentielles de Cymbopogon nardus (L) et Ocimum gratissimum (L) contre Sitophilus zeamais Motsch et Rhyzopertha dominica F, les principaux insectes nuisibles au maïs en stockage. International Journal of Biological and Chemical Sciences. 10(2), 695–705. https://doi.org/10.4314/ijbcs.....
Salim, M.M., 2011. Evaluation de l’effet insecticide et de la persistance des huiles essentielles de Callistemon viminalis G Don, de Xylopia aethiopica Dunal et de Lippiache valieri Moldenke sur Callosobruchus maculatus Fabricius et Sitophilus zeamais Motchulsky, principaux ravageurs des stocks du niébé et du maïs. Mémoire de Master II. 13, 35. https://doi.org/10.4314/ijbcs.....
Savkovic´, U., Đorđevic´ m Stojkovic´, Stojković, B., 2019. Potential for Acanthoscelides obtectus to Adapt to New Hosts Seen in Laboratory Selection Experiments. Insects. 10, 153. https://doi.org/10.3390/insect....
Shah, F.M., Razaq, M., Ali, A., Han, .P., J, C., 2017. Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan, Nicolas Desneux., pp. 24–24.
Sherin, M.M.Y.H., 2018. Insecticidal and biological effects of four plant oils on the cowpea beetle, Callosobruchus maculatus (F.). Journal of Entomology and Zoology Studies. 6(2), 3111–3118.
Singh, P., Jakhmola, S.S., 2011. Efficacy of botanical extracts on biological activities of pulse beetle Callosobruchus maculatus (Fab.) On green gram. Trends in Biosciences. 4(1), 25–30.
Stoll, G., 1994. Protection naturelle des végétaux en zone tropicale. CTA AGRECOL, 95–99.
Sujatha, A.S., Prabhudas, P., P., 2012. Efficacy of pulverised leaves of Annona squamosa (L.), Moringa oleifera (Lam.) and Eucalyptus globulus (Labill.) against the stored grain pest, Tribolium castaneum (Herbst.). Recent Research in Science and Technology. 4, 19–23.
Valarmathy, K., Gokulakrishnan, M., Kausar, M.S., Kusum, P., 2010. A study of antimicrobial activity of ethanolic extracts of various plant leaves against selected microbial species. International Journal of Pharma Sciences and Research (IJPSR). 1(8), 293–295.
Wahedi, J.A., David, L.D., Edward, A., Mshelmbula, B.P., Bullus, A., 2013. Efficacy of seed powder and extracts of Azadirachta indica Linn. (Meliaceae) at graded levels on adult Callosobruchus maculatus (Coleoptera: Bruchidae) in nubi, north - eastern Nigeria. Interna- tional Journal of Science and Nature. 4(1), 138–141.
Woguem, V., 2017. Etude des activités insecticide, antifongique, antioxydante, antiproliférative et caractérisation chimique des huiles essentielles de cinq plantes aromatiques du Cameroun. Sciences and Technology, 140–140.
Yilmaz, M.A., 2020. Simultaneous quantitative screening of 53 phyto- chemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC-MS/MS method validation. Industrial Crops and Products. 149, 112347–112347. https://doi.org/10.1016/j.indc....