ORIGINAL RESEARCH PAPER
Impacts on the immune system of Cyprinus carpio exposure with a mixed algal extract against Aeromonas hydrophila
 
More details
Hide details
1
Department of Zoology, Sacred Heart Arts and Science College, India
2
Zoology, Syed Ammal Arts and Science College, India
CORRESPONDING AUTHOR
Tamizhazhagan Vairakannu   

Department of Zoology, Syed Ammal Arts and Science College, Ramanathapuram 623513, India
Submission date: 2021-09-12
Final revision date: 2021-10-03
Acceptance date: 2021-10-07
Online publication date: 2021-10-10
 
 
KEYWORDS
TOPICS
Biology
 
ABSTRACT
This study evaluates the influence of mixed algal extract (Chlorella vulgaris, Euglena viridis and Spirulina platensis) on common carp Cyprinus Carpio, which infected infect with bacterial pathogen Aeromonas hydrophila. C. carpio was administered intraperitoneally with various doses such as methanol extract (0, 0,1, 1, 10 and 100 mg/kg). The immunological parameters of fish blood and serum samples (Neutrophil activity, Lysozyme activity, Serum myeloperoxidase intensity, Serum bactericidal activity, and Serum antiprotease activity) were investigated at 7, 14, 21, and 28 days of post-immunization. Fish had been tested by virulent A. hydrophila for 30 days after treatment and 14 days after infection were identified with mortalities. The findings showed that neutrophil levels, lysozyme activity, serum bactericidal activity, myeloperoxidase activity, and serum antiprotease activity significantly enhanced (p<0.05) compared to untreated control. Mixed dietary algae at 1 and 10 mg/kg levels demonstrated slightly (p<0.05) higher relative percentage survival (90 percent) than control against A. hydrophila disease infection. Results indicated that mixed algal extract in C. carpio positively impacts non-specific immune parameters and boosts disease tolerance to A. hydrophila infections.
 
REFERENCES (44)
1.
Amar, E.C., Kiron, V., Satoh, S., Watanabe, T., 2004. Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish & Shellfish Immunology. 16, 527–564. https://doi.org/10.1016/ j.fsi.2003.09.004.
 
2.
Ambrosi, M.A., Reinehr, C.O., Bertolin, T.E., Costa, J.A., Colla, L.M., 2008. Propriedades de saúde de Spirulina spp. Rev. Ciências Farm. Básica e Apl. 29, 109–117.
 
3.
Barsanti, L., Vismara, R., Passarelli, V., Gualtieri, P., 2001. Paramylon (b-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. Journal of Applied Phycology. 13, 59–65. https://doi.org/10.1023/A:1008....
 
4.
Becker, E.W., 2007. Micro-algae as a source of protein. Biotechnology Advances. 25, 207–210. https://doi.org/10.1016/j.biot....
 
5.
Bowden, T.J., Butler, I.R., Bricknell, I.R., Ellis, A.E., 1997. Serum trypsin inhibitory activity in five species of farmed fish. Fish & Shellfish Immunology. 7, 377–385. https://doi.org/10.1006/fsim.1....
 
6.
Brennan, L., Owende, P., 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews. 14, 557–577. https://doi.org/10.1016/j.rser....
 
7.
Christaki, E., Florou-Paneri, P., Bonos, E., 2011. Microalgae: a novel ingredient in nutrition. International Journal of Food Sciences and Nutrition. 62, 794–799. https://doi.org/10.3109/096374....
 
8.
Chung, S., Secombes, C.J., 1988. Analysis of events occuring within teleost macrophages during the respiratory burst. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 89, 539–583. https://doi.org/10.1016/0305-0....
 
9.
Das, B.K., Pradhan, J., Pattnaik, P., Samantaray, B.R., Samal, S.K., 2005. Production of antibacterials from the freshwater alga Euglena viridis (Ehren). World Journal of Microbiology and Biotechnology. 21, 45– 50. https://doi.org/10.1007/s11274....
 
10.
Ellis, A.E., 1999. Immunity to bacteria in fish. Fish & Shellfish Immunology. 9, 291–308. https://doi.org/10.1006/fsim.1....
 
11.
Guedes, A.C., Barbosa, C.R., Amaro, H.M., Pereira, C.I., Malcata, F.X., 2011. Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. International Journal of Food Science & Technology. 46, 862–870. https://doi.org/10.1111/j.1365...
 
12.
Guzmán, S., Gato, A., Calleja, J.M., 2001. Antiinflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother- apy Research. 15, 224–230. https://doi.org/10.1002/ptr.71....
 
13.
Harikrishnan, R., Balasundaram, C., Kim, M.C., Kim, J.S., Han, Y.J., Heo, M.S., 2009. Innate immune response and disease resistance in Carassius auratus by mixed herbal solvent extracts. Fish and Shellfish Immunology. 27, 508–523. https://doi.org/10.1016/j.fsi.....
 
14.
Hoseini, S.M., Khosravi-Darani, K., Mozafari, M.R., 2013. Nutritional and medical applications of Spirulina microalgae. Mini-Reviews in Medicinal Chemistry. 13, 1231–1238. https://doi.org/10.2174/138955....
 
15.
Hutchinson, T.H., Manning, M.J., 1996. Seasonal trends in serum lysozyme activity and total protein concentration in dab (Limanda limandaL.) sampled from Lyme Bay, U.K. Fish & Shellfish Immunology. 6, 473–482. https://doi.org/10.1006/fsim.1....
 
16.
Janczyk, P., Halle, B., Souffrant, W.B., 2009. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poultry Science. 88, 2324– 2332. https://doi.org/10.3382/ps.200....
 
17.
Kajita, Y., Sakai, M., Atsuta, S., Kobayash, M., 1990. The immunomod- ulatory effects of levamisole on rainbow trout, Oncorhynchus Mykiss. Fish Pathol. 25, 93–101.
 
18.
Karemore, A., Pal, R., Sen, R., 2013. Strategic enhancement of algal biomass and lipid in Chlorococcum infusionum as bioenergy feedstock. Algal Research. 2, 113–121. https://doi.org/10.1016/j.alga....
 
19.
Khan, Z., Bhadouria, P., Bisen, P.S., 2005. Nutritional and therapeutic potential of Spirulina. Current Pharmaceutical Biotechnology. 6, 373–379. https://doi.org/10.2174/138920....
 
20.
Kondo, Y., Kato, A., Hajo, H., Nozoe, S., Takeuchi, M., Ochi, K., 1992. Cytokine-related immunopotentiating activities of paramylon, a albha 1,3 D-glucan fro, Euglena gracilis. Journal of Pharmacobio- Dynamics. 5, 617–638. https://doi.org/10.1248/bpb197....
 
21.
Kotrbacek, V., Halouzka, R., Jurajda, V., Knotkova, Z., Filka, J., 1994. Increased immune response in broilers after administration of natural food supplements. Veterinary Medicine (Praha). 39, 321–328.
 
22.
Lamas, J., Ellis, A.E., 1994. Atlantic salmon (Salmo salar) neutrophil responses to Aeromonas salmonicida. Fish & Shellfish Immunology. 4, 201–220. https://doi.org/10.1006/fsim.1....
 
23.
Lisboa, C.R., Pereira, A.M., Ferreira, S.P., Jorge, A.V., 2014. Utilisation of Spirulina sp. and Chlorella pyrenoidosa Biomass For The Productionof Enzymatic Protein Hydrolysates. Int. J. Eng. Res. Appl. 4, 29–38.
 
24.
Michael, R.D., Srinivas, S.D., Sailendri, K., 1994. A rapid method for repetitive bleeding in fish. Indian Journal of Experimental Biology 32, 838–847.
 
25.
Morais, M.G., Vaz, B.S., Morais, E.G., Costa, J.A.V., 2014. Biological Effects of Spirulina (Arthrospira) Biopolymers and Biomass in the Development of Nanostructured Scaffolds. BioMed Research International, 1–9. https://doi.org/10.1155/2014/7....
 
26.
Pangestuti, R., Kim, S.K., 2011. Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods. 3, 255–266. https://doi.org/10.1016/j.jff.....
 
27.
Peddie, S., Zou, J., Secombes, J., 2002. Immunostimulation in the rain- bow trout (Oncorhynchus mykiss) following intraperitoneal adminis- tration of Ergosan. Veterinary Immunology and Immunopathology. 86, 101–113. https://doi.org/10.1016/s0165-....
 
28.
Quade, M.J., Roth, J.A., 1997. A rapid, direct assay to measure degran- ulation of bovine neutrophil primary granules. Veterinary Immunology and Immunopathology. 58, 239–287. https://doi.org/ 10.1016/s0165-2427(97)00048-2.
 
29.
Raa, J., 1996. The use of immunostimulatory substances in fish and shellfish farming. Reviews in Fisheries Science. 4, 229–288. https:// doi.org/10.1080/10641269609388....
 
30.
Ravelonandro, P.H., Ratianarivo, D.H., Joannis-Cassan, C., Isambert, A., Raherimandim, M., 2008. By Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. Journal of Chemical Technology & Biotechnology. 83, 842–848. https://doi.org/10.1002/jctb.1....
 
31.
Ringo, E., Olsen, R.E., Gifstad, T.O., Dalmo, R.A., Amlund, H., Hemre, G.I., Bakke, A.M., 2010. Prebiotics in aquaculture: a reviews. Aquaculture Nutrition. 16, 117–136. https://doi.org/10.1111/j.1365....
 
32.
Robertsen, B., 1999. Modulation of the non-specific defence of fish by structurally conserved microbial polymers. Fish and Shellfish Immunology. 9, 269–290. https://doi.org/10.1006/fsim.1....
 
33.
Sahu, S., Das, B.K., Mishra, B.K., Pradhan, J., Sarangi, N., 2007. Effect of Allium sativum on the immunity of Labeo rohita infected with Aeromonas hydrophila. Journal of Applied Ichthyology. 23, 80–86. https://doi.org/10.1111/j.1439...
 
34.
Sakai, M., 1999. Current research status of fish immunostimulants. Aquaculture. 172, 63–92. https://doi.org/10.1016/S0044-....
 
35.
Sattanathan, G., Thanapal, G., Swaminathan, S., Kim, Vijaya, .R., Kim, H., Balasubramanian, B., 2020. Influences of dietary inclusion of algae Chaetomporpha aerea enhanced growth performance, immunity, haematological response and disease resistance of Labeo rohita challenged with Aeromonas hydrophila. Aquaculture Reports, 100353. https://doi.org/10.1016/j.aqre....
 
36.
Selvaraj, V., Sampath, K., Sekar, V., 2009. Administration of lipopolysac- charide increaseds specific and non-specific immune parameters and survival in carp infected with Aeromonas hydrophila. Aquaculture. 286, 176–183. https://doi.org/10.1016/j.aqua....
 
37.
Solem, S.T., Jorgensen, J.B., Robertsen, B., 1995. Stimulation of respiratory burst and phagocytic activity in Atlantic salmon (Salmo salar L.) macrophages by lipo- polysaccharide. Fish & Shellfish Immunology. 5, 475–491. https://doi.org/10.1016/S1050-....
 
38.
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering. 101, 87–96. https://doi.org/10.1263/jbb.10....
 
39.
Tamizhazhagan, V., Pugazhendy, K., Jayanthi, S.V., Sawicka, C.B., Gerlee, S., Ramarajan, K., Manikandan, P., 2017. The toxicity effect of pesticide Monocrotophos 36% E.C on the enzyme activity changes in liver and muscles of Labeo rohita (Hamilton, 1882). International Journal of Pharma Sciences and Research. 8(5), 60–67.
 
40.
Tamizhazhaganv, Pugazhendy, K., Sakthidasan, J.V.C., 2016. The toxicity effect of Monocrotophos 36 % E.C on the Histological changes in gill of Labeo rohita. International Journal of Innovative Research in Multidisciplinary Field. 2(11), 435–439.
 
41.
Usha, R., Pugazhendy, K., Tamizhazhagan, V., Sakthidasan, V., Jayanthi, C., 2017. Potential efficacy of Tribulu sterrtri against toxic impact of chlorpyrifos on enzymological alteration in the fresh water fish Oriochrommis mossambicus. International Journal of Pharmacy and Biological Sciences. 7(3), 168–184.
 
42.
Vijayavel, K., Anbuselvam, C., Balasubramanian, M.P., 2007. Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene- indcued oxidative stress in the albino rats. Molecular and Cellular Bio- chemistry. 303, 39–44. https://doi.org/10.1007/s11010... Vílchez, C., Forján, E., Cuaresma, M., Bédmar, F., Garbayo, I., Vega, J.M., 2011. Marine carotenoids: Biological functions and commercial applications. Marine Drugs. 9, 319–333. https://doi.org/ 10.3390/md9030319.
 
43.
Wang, B., Li, Y., Wu, N., Lan, C.Q., 2008. CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology. 79, 707–718. https://doi.org/10.1007/s00253....
 
44.
Wijendra, G.D.N.P., Pathiratne, A., 2007. Evaluation of immune responses in an Indian carp, L. rohita (Ham.) fed with levamisole incorporated diet. Journal of Science of the University of Kelaniya Sri Lanka. 3, 17–28. http://doi.org/10.4038/josuk.v....