ORIGINAL RESEARCH PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Plant biodiversity is endowed with a huge composition and variability of active molecules known for their therapeutic effects against several diseases. In this current work, several phenolic compounds are subject of in silico evaluation of their interactions with six severe acute respiratory syndrome coronavirus (SARS-CoV) enzymes to evaluate the binding mode and mechanism of phenolic compounds interactions with SARS-CoV-2 enzymes. Results of molecular docking and data analysis revealed that the importance of interactions was dependent to the phenolic class of tested ligand; tannin, biflavone and flavonoid glycoside were the most interactive classes. Among the top three ranked molecules recording lower binding energy against each virus protein target, In conclusion, it was found that Amentoflavone, Dieckol, Bilobetin, Punicalagin, Tellimagrandin-I, Tannic acid, Sciadopitysin, Ginkgetin and Chebulagic acid could be a promising antiviral drug since they present more important binding energy than conventional ones. Their interactions were justified by the Wenn diagram and Ramachandran plot. However, these phenolic compounds recorded an important bioavailability score and found fulfilling most of the drug-likeness criteria such as Lipinski's rule. Clearly, all observations point to further required works aiming to examine more deeply the possibility of using these molecules that could be probably a subject of pre-clinical studies.
 
REFERENCES (98)
1.
Abdillah, S., Cita, Y.P., 2020. Potential target plants as anti-sars-cov- 2 (Coronavirus): Expectations and challenges. Indian journal of pharmacy and pharmacology. 7, 57–65. https://doi.org/10.18231/ j.ijpp.2020.013.
 
2.
Adnan, M., Rasul, A., Hussain, G., Shah, M.A., Zahoor, M.K., Anwar, H., Sarfraz, I., Riaz, A., Manzoor, M., Adem, Ş., 2020. Ginkgetin: A natural biflavone with versatile pharmacological activities. Food and Chemical Toxicology. 145, 111642. https://doi.org/10.1016/j.fct.....
 
3.
Ahmad, J., Ikram, S., Ahmad, F., Rehman, I.U., Mushtaq, M., 2020. SARS-CoV-2 RNA Dependent RNA polymerase (RdRp)-A drug repurposing study. Heliyon. 6, 4502–4502. https://doi.org/10.1016/ j.heliyon.2020.e04502.
 
4.
Alamri, M.A., Qamar, M.T., Mirza, M.U., Alqahtani, S.M., Froeyen, M., Chen, L.L., 2020. Discovery of human coronaviruses pan-papain- like protease inhibitors using computational approaches. Journal of Pharmaceutical Analysis. 10, 546–559. https://doi.org/10.1016/j.jpha....
 
5.
Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., Garry, R.F., 2020. The proximal origin of SARS-CoV-2. Nature Medicine. 26, 450–452. https://doi.org/10.1038/s41591....
 
6.
Augustin, T.L., Hajbabaie, R., Harper, M.T., Rahman, T., 2020. Novel Small-Molecule Scaffolds as Candidates against the SARS Coron- avirus 2 Main Protease: A Fragment-Guided in Silico Approach. Molecules. 25, 5501. https://doi.org/10.3390/molecu....
 
7.
Baell, J.B., Holloway, G.A., 2010. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of medicinal chemistry. 53, 2719–2740. https://doi.org/10.1021/jm9011....
 
8.
Baer-Dubowska, W., Szaefer, H., Majchrzak-Celińska, A., Krajka- Kuźniak, V., 2020. Tannic acid: specific form of tannins in cancer chemoprevention and therapy-old and new applications. Current Pharmacology Reports. 6, 28–37. https://doi.org/10.1007/s40495....
 
9.
Banerjee, T., Valacchi, G., Ziboh, V.A., Der, V., Vliet, A., 2002. Inhibition of TNFα-induced cyclooxygenase-2 expression by amentoflavone through suppression of NF-κB activation in A549 cells. Molecular Cellular Biochemistry. 238, 105–110. https://doi.org/10.1023/a:1019....
 
10.
Bastikar, V.A., Bastikar, A.V., Chhajed, S.S., 2020. Understanding the Role of Natural Medicinal Compounds Such as Curcumin and Allicin against SARS-CoV-2 Proteins as Potential Treatment against COVID- 19: An In silico Approach. Journal of Proteomics & Bioinformatics. 13, 1–14.
 
11.
Bobrowski, T., Alves, V., Melo-Filho, C.C., Korn, D., Auerbach, S., Schmitt, C., Muratov, E., Tropsha, A., 2020. Computational models identify several FDA approved or experimental drugs as putative agents against SARS-CoV-2. ChemRxiv . https://doi.org/10.26434/chemr....
 
12.
Boulekbache-Makhlouf, L., Meudec, E., Chibane, M., Mazauric, J.P., Slimani, S., Henry, M., Cheynier, V., Madani, K.J., 2010. Analysis by high-performance liquid chromatography diode array detection mass spectrometry of phenolic compounds in fruit of Eucalyptus globulus cultivated in Algeria. Journal of Agricultural Food Chemistry. 58, 12615–12624. https://doi.org/10.1021/jf1029....
 
13.
Brenk, R., Schipani, A., James, D., Krasowski, A., Gilbert, I.H., Frear- son, J., Wyatt, P.G., 2008. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem. 3, 435–435. https://doi.org/10.1002/cmdc.2....
 
14.
Chauhan, S., 2020. Comprehensive review of coronavirus disease 2019 (COVID-19). Biomedical Journal. 43, 334–340. https://doi.org/10.1016/j.bj.2....
 
15.
Chen, C.N., Lin, C.P., Huang, K.K., Chen, W.C., Hsieh, H.P., Liang, P.H., Hsu, J.T., A, ., 2005. Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3’-digallate (TF3). Evidence-Based Complementary and Alternative Medicine. 2, 209–215. https://doi.org/10.1093/ecam/n....
 
16.
Chen, F., Chan, K., Jiang, Y., Kao, R., Lu, H., Fan, K., Cheng, V., Tsui, W., Hung, I., Lee, T., 2004. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology. 31, 69–75. https://doi.org/10.1016/j.jcv.....
 
17.
Chen, S.C., Chung, K.T., 2000. Mutagenicity and antimutagenicity studies of tannic acid and its related compounds. Food and Chemical Toxicology. 38, 1–5. https://doi.org/10.1016/s0278-....
 
18.
Cho, K.K., Choi, I.S., 2014. Antibacterial activity of the phlorotan- nins dieckol and phlorofucofuroeckol-A from Ecklonia cava against Propionibacterium acnes. Botanical Sciences. 92, 425–431.
 
19.
Choi Sung-Kyu, Oh Hyun-Mi, Lee Su-Kyung, Jeong Dae, Ryu Seong, Son Kwang-Hee, Han Dong, Sung Nack-Do, Baek Nam-In, Kwon Byoung-Mog., 2006. Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Natural product research. 20, 341–346. https://doi.org/10.1080/147864....
 
20.
Daina, A., Michielin, O., Zoete, V., 2017a. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 7, 42717–42717. https://doi.org/10.1038/srep42....
 
21.
Demšar, J., Curk, T., Erjavec, A., Č Gorup, Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M., Toplak, M., Starič, A., 2013. Orange: data mining toolbox in Python. the Journal of machine Learning research. 14, 2349–2353.
 
22.
Egan, W.J., Merz, K.M., Baldwin, J.J.J.J., 2000. Prediction of drug absorption using multivariate statistics.. 43, 3867–3877. https://doi.org/10.1021/jm0002....
 
23.
Eom, S.H., Moon, S.Y., Lee, D.S., Kim, H.J., Park, K., Lee, E.W.,Kim, T.H., Chung, Y.H., Lee, M.S., Kim, Y.M., 2015. In vitro antiviral activity of dieckol and phlorofucofuroeckol-A isolated from edible brown alga Eisenia bicyclis against murine norovirus. Algae. 30, 241–246. https://doi.org/10.4490/algae.....
 
24.
Estrada, E.J., 2020. Topological analysis of SARS CoV-2 main proteasehttps://doi.org/10.1063/5.0013.... 30, 61102–61102. https://doi.org/10.1063/5.0013....
 
25.
Fraga-Corral, M., García-Oliveira, P., Pereira, A.G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M.A., Simal-Gandara, J., 2020. Tech- nological application of tannin-based extracts. Molecules. 25, 614. https://doi.org/10.3390/molecu....
 
26.
Freitas, A., Almeida, M., Andrighetti-Fröhner, C., Cardozo, F., Barardi, C., Farias, M., Simões, C., 2009. Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract. Journal of Ethnopharmacology. 126, 512–517. https://doi.org/10.1016/j.jep.....
 
27.
Gentile, D., Patamia, V., Scala, A., Sciortino, M.T., Piperno, A., Rescifina, A., 2020. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Marine Drugs. 18, 225. https://doi.org/10.3390/md1804....
 
28.
Ghose, A.K., Viswanadhan, V.N., Wendoloski, J.J., 1999. A knowledge- based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry. 1, 55–68. https://doi.org/10.1021/cc9800....
 
29.
Ghosh, R., Chakraborty, A., Biswas, A., Chowdhuri, S.J.J.O.B.S., 2020b. Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. Dynamics, 1–16. https://doi.org/10.1080/073911....
 
30.
Gu, Q., Li, Y., Chen, Y., Yao, P., Ou, T., 2013b. Sciadopitysin: active component from Taxus chinensis for anti-Alzheimer’s disease. Natural product research. 27, 2157–2160. https://doi.org/10.1080/147864....
 
31.
Guinea, M., Franco, V., Araujo-Bazán, L., Rodríguez-Martín, I., González, S., 2012. In vivo UVB-photoprotective activity of extracts from commercial marine macroalgae. Food and Chemical Toxicology. 50, 1109–1117. https://doi.org/10.1016/j.fct.....
 
32.
Gülçin, İ., Huyut, Z., Elmastaş, M., Aboul-Enein, H.Y., 2010. Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry. 3, 43–53. https://doi.org/10.1016/j.arab....
 
33.
Gupta, S., Biswal, P.S., Panda, S., Ray, S.K., Rana, A.K., K, M., 2020. Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with in-vitro effective drug ivermectin. Journal of Biomolecular Structure Dynamics, 1–10. https://doi.org/10.1080/073911....
 
34.
Hamada, S., Kataoka, T., Woo, J.T., Yamada, A., Yoshida, T., Nishimura, T., Otake, N., Nagai, K., 1997. Immunosuppressive effects of gallic acid and chebulagic acid on CTL-mediated cyto- toxicity. Biological Pharmaceutical Bulletin. 20, 1017–1019. https://doi.org/10.1248/bpb.20....
 
35.
Han, Q., Song, J., Qiao, C., Wong, L., Xu, H., 2006. Preparative isolation of hydrolysable tannins chebulagic acid and chebulinic acid from Terminalia chebula by high-speed counter-current chromatography. Journal of Separation Science. 29, 1653–1657. https://doi.org/10.1002/jssc.2....
 
36.
Hui, D.S., Azhar, E.I., Madani, T.A., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T.D., Memish, Z.A., Drosten, C., 2020. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases. 91, 264–266. https://doi.org/10.1016/j.ijid....
 
37.
Islam M., Hoque M., Rahman M., Alam A., Akther Masuda, Puspo J., Akter Salma, Sultana Munawar, Crandall Keith, Hossain M., 2020. Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Scientific reports. 10, 14004. https://doi.org/10.1038/s41598....
 
38.
Jia, Z., Yan, L., Ren, Z., Wu, L., Wang, J., Guo, J., Zheng, L., Ming, Z., Zhang, L., Lou, Z., 2019. Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Research. 47, 6538–6550. https://doi.org/ 10.1093/nar/gkz409.
 
39.
Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C.J.N., 2020. Structure of M pro from SARS-CoV- 2 and discovery of its inhibitors. Nature Medicine. 582, 289–293. https://doi.org/10.1038/s41586....
 
40.
Kaczmarek, B., 2020. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-A minireview. Materials. 13, 3224. https://doi.org/10.3390/ma1314....
 
41.
Kadaré, G., Haenni, A.L., 1997. Virus-encoded RNA helicases. Journal of Virology. 71. https://doi.org/10.1128/jvi.71....
 
42.
Khalifa, I., Zhu, W., Mohammed, H.H.H., Dutta, K., Li, C., 2020. Tannins inhibit SARS-CoV-2 through binding with catalytic dyad residues of 3CLpro: An in silico approach with 19 structural different hydrolysable tannins. Journal of food biochemistry. 44, e13432. https://doi.org/10.1111/jfbc.1....
 
43.
Khan, A., Khan, M., Saleem, S., Babar, Z., Ali, A., Khan, A.A., Sardar, Z., Hamayun, F., Ali, S.S., Wei, D.Q., 2020. Phylogenetic analysis and structural perspectives of RNA-dependent RNA-polymerase inhibition from SARs-CoV-2 with natural products. Interdisciplinary Sciences: Computational Life Sciences. 12, 335–348. https://doi.org/ 10.1007/s12539-020-00381-9.
 
44.
Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A., 2016. PubChem substance and compound databases. Nucleic Acids Research. 44, 1202–1213. https://doi.org/10.1093/nar/gk....
 
45.
Kinoshita, S., Inoue, Y., Nakama, S., Ichiba, T., Aniya, Y., 2007. Antiox- idant and hepatoprotective actions of medicinal herb, Terminalia cat- appa L. from Okinawa Island and its tannin corilagin. Phytomedicine. 14, 755–762. https://doi.org/10.1016/j.phym....
 
46.
Koirala, P., Jung, H.A., Choi, J.S., 2017. Recent advances in pharmacological research on Ecklonia species: a review. Archives of Pharmacal Research. 40, 981–1005. https://doi.org/10.1007/s12272....
 
47.
Kong, R., Yang, G., Xue, R., Liu, M., Wang, F., Hu, J., Guo, X., Chang, S., 2020. COVID-19 Docking Server: A meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19. Bioinformatics. 36, 5109–5111. https://doi.org/10.1093/bioinf....
 
48.
Krauze-Baranowska, M., Pobłocka, L., Helab, A.A.E., 2005. Biflavones from Chamaecyparis obtusa. Zeitschrift für Naturforschung C. 60, 679–685. https://doi.org/10.1515/znc-20....
 
49.
Krauze-Baranowska, M., Wiwart, M., 2003. Antifungal activity of biflavones from Taxus baccata and Ginkgo biloba. Zeitschrift für Naturforschung C. 58, 65–69. https://doi.org/10.1515/znc-20....
 
50.
Lavoie, S., Côté, I., Pichette, A., Gauthier, C., Ouellet, M., Nagau- Lavoie, F., Mshvildadze, V., Legault, J., 2017. Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complementary Alternative Medicine. 17, 123–123. https://doi.org/10.1186/s12906....
 
51.
Lee, S., Kim, J., Yoo, S., Kwon, S., 2013. Cytoprotective effect of dieckol on human endothelial progenitor cells (hEPCs) from oxidative stress- induced apoptosis. Free Radical Research. 47, 526–534. https://doi.org/10.3109/107157....
 
52.
Li, F., Song, X., Su, G., Wang, Y., Wang, Z., Jia, J., Qing, S., Huang, L., Wang, Y., Zheng, K., 2019. Amentoflavone inhibits HSV-1 and ACV-resistant strain infection by suppressing viral early infection. Viruses. 11, 466–466. https://dx.doi.org/10.3390/v11....
 
53.
Li, M., Li, B., Hou, Y., Tian, Y., Chen, L., Liu, S., Zhang, N., Dong, J.J.P.R., 2019. Anti-inflammatory effects of chemical com- ponents from Ginkgo biloba L. male flowers on lipopolysaccharide- stimulated RAW264.7 macrophages. Phytotherapy Research. 33, 989–997. https://doi.org/10.1002/ptr.62....
 
54.
Li, M., Li, B., Xia, Z.M., Tian, Y., Zhang, D., Rui, W.J., Dong, J.X., Xiao, F.J., 2219. Anticancer effects of five biflavonoids from Ginkgo Biloba L. male flowers in vitro. Molecules. 24, 1496. https://doi.org/ 10.3390/molecules24081496.
 
55.
Li, Y.L., Chen, X., Niu, S.Q., Zhou, H.Y., Li, Q.S., 2020. Protective Antioxidant Effects of Amentoflavone and Total Flavonoids from Hedyotis diffusa on H2O2-Induced HL-O2 Cells through ASK1/p38 MAPK Pathway. Chemistry & Biodiversity. 17, e2000251. https://doi.org/10.1002/cbdv.2...
 
56.
Lin, L.T., Chen, T.Y., Chung, C.Y., Noyce, R.S., Grindley, T.B., Mccormick, C., Lin, T.C., Wang, G.H., Lin, C.C., Richard- son, C.D., 2011. Hydrolyzable tannins (chebulagic acid and puni- calagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. Journal of virology. 85, 4386–4398. https://doi.org/10.1128/jvi.01....
 
57.
Lin, L.T., Chen, T.Y., Lin, S.C., Chung, C.Y., Lin, T.C., Wang, G.H., Anderson, R., Lin, C.C., Richardson, C.D., 2013. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC microbiology. 13, 187– 187. https://doi.org/10.1186/1471-2....
 
58.
Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 23, 3–25. https://doi.org/10.1016/S0169-....
 
59.
Liu, P.K., Weng, Z.M., Ge, G.B., Li, H.L., Ding, L.L., Dai, Z.R., Hou, X.D., Leng, Y.H., Yu, Y., Hou, J., 2018. Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhi- bition potentials and mechanism. International Journal of Biolog- ical Macromolecules. 118, 2216–2223. https://doi.org/10.1016/j.ijbi....
 
60.
Lobstein-Guth, A., Briancon-Scheid, F., Victoire, C., Haag-Berrurier, M., Anton, R., 1988. Isolation of amentoflavone from Ginkgo biloba. Planta medica. 54, 555–556. https://doi.org/10.1055/ s-2006-962549.
 
61.
Lou, J.S., Bi, C., Chan, G., Dong, T., Tsim, K., 2017. Ginkgetin, a biflavonoid derived from leaves of Ginkgo biloba, induces autophagic cell death in non-small cell lung cancer via p62. Oncotarget. 8, 93131–93148. https://doi.org/10.18632/oncot....
 
62.
Martin, Y.C., 2005. A bioavailability score. Journal of Medicinal Chemistry. 48, 3164–3170. https://doi.org/10.1021/jm0492... Michler, H., Laakmann, G., Wagner, H., 2011. Development of an LC-MS method for simultaneous quantitation of amentoflavone and biapigenin, the minor and major biflavones from Hypericum perforatum L., in human plasma and its application to real blood. Phytochemical Analysis. 22, 42–50. https://doi.org/10.1002/pca.12....
 
63.
Moon, H.E., Islam, M.N., Ahn, B.R., Chowdhury, S.S., Sohn, H.S., Jung, H.A., Choi, J.S., 2011. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Bioscience, Biotechnology, and Biochemistry. 75, 1472–1480. https://doi.org/10.1271/bbb.11....
 
64.
Muegge, I., Heald, S.L., Brittelli, D., 2001. Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry. 44, 1841– 1846. https://doi.org/10.1021/jm0155....
 
65.
Nukoolkarn, V., Lee, V.S., Malaisree, M., Aruksakulwong, O., Hannong- bua, S., 2008. Molecular dynamic simulations analysis of ritronavir and lopinavir as SARS-CoV 3CLpro inhibitors. Journal of Theoretical Biology. 254, 861–867. https://doi.org/10.1016/j.jtbi....
 
66.
Park Ji-Young, Kim Jang Hoon, Kwon Jung Min, Kwon Hyung-Jun, Jeong Hyung Jae, Kim Young Min, Kim Doman, Lee Woo Song, Ryu Young Bae., 2013 Dieckol, a SARS-CoV 3CLpro inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorganic & Medicinal Chemistry. 21, 3730–3737. https://doi.org/10.1016/j.bmc.....
 
67.
Puttaswamy, H., Gowtham, H.G., Ojha, M.D., Yadav, A., Choudhir, G., Raguraman, V., Kongkham, B., Selvaraju, K., Shareef, S., Gehlot, P., 2020. In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Scientific reports. 10, 20584. https://doi.org/10.1038/s41598....
 
68.
Qamar, M.T.U., Alqahtani, S.M., Alamri, M.A., Chen, L.L., 2020. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis. 10(4), 313–319. https://doi.org/10.1016/j.jpha....
 
69.
Ramaiah, R., Suresh, P.C., 2013. Molecular docking studies of phytochemical compounds with viral proteases. International Journal of Pharmaceutical Sciences Research. 4, 475–482. http://dx.doi.org/ 10.13040/IJPSR.0975-8232.4(1).475-82.
 
70.
Rameshkumar, M.R., Indu, P., Arunagirinathan, N., Venkatadri, B., El- Serehy, H.A., Ahmad, A., 2021. Computational selection of flavonoid compounds as inhibitors against SARS-CoV-2 main protease, RNA- dependent RNA polymerase and spike proteins: A molecular docking study. Saudi Journal of Biological Sciences. 28, 448–458. https:// doi.org/10.1016/j.sjbs.2020.10....
 
71.
Rana, S., Sharma, S., Ghosh, K.S., 2020. Virtual screening of naturally occurring antiviral molecules for SARS-CoV-2 mitigation using docking tool on multiple molecular targets. ChemRxiv. Cambridge: Cambridge Open Engage, Pre-Print.
 
72.
Ruan Xiao, Yan Liu-Ye, Li Xian-Xian, Liu Ben, Zhang Huan, Wang Qiang., 2014. Optimization of process parameters of extraction of amentoflavone, quercetin and ginkgetin from Taxus chinensis using supercritical CO2 plus co-solvent. Molecules. 19, 17682–17696. https://doi.org/ 10.3390/molecules191117682.
 
73.
Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I., Russo, G.L., 2020. Roles of flavonoids against coronavirus infection. Chemico- Biological Interactions. 328, 109211. https://doi.org/10.1016/j.cbi.....
 
74.
Rut, W., Lv, Z., Zmudzinski, M., Patchett, S., Nayak, D., Snipas, S.J., Oualid, F.E., Huang, T.T., Bekes, M., Drag, M., 2020. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti-COVID-19 drug design. Science Advances. 6(42), eabd4596. https://doi.org/10.1126/sciadv....
 
75.
Ryu, Y.B., Jeong, H.J., Kim, J.H., Kim, Y.M., Park, J.Y., Kim, D.,Naguyen, T.T.H., Park, S.J., Chang, J.S., Park, K.H., 2010a. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic medicinal chemistry. 18, 7940–7947. https:// doi.org/10.1016/j.bmc.2010.09.....
 
76.
Ryu, Y.B., Jeong, H.J., Yoon, S.Y., Park, J.Y., Kim, Y.M., Park, S.J., Rho, M.C., Kim, S.J., Lee, W.S.J., 2011. Influenza virus neu- raminidase inhibitory activity of phlorotannins from the edible brown alga Ecklonia cava. Journal of Agricultural and Food Chemistry. 59, 6467–6473. https://doi.org/10.1021/jf2007....
 
77.
Sanjeewa, K.A., Fernando, I., Kim, H.S., Jayawardena, T.U., Ryu, B., Yang, H.W., Ahn, G., Lee, W., Jeon, Y.-J.J.J.O.A.P., 2020. Dieckol: an algal polyphenol attenuates urban fine dust-induced inflammation in RAW 264.7 cells via the activation of anti-inflammatory and antioxidant signaling pathways. Journal of Applied Phycology. 32, 2387–2396. https://doi.org/10.1007/s10811....
 
78.
Sasidharan, I., Sundaresan, A., Nisha, V., Kirishna, M.S., Raghu, K., Jayamurthy, P., 2012. Inhibitory effect of Terminalia chebula Retz. fruit extracts on digestive enzyme related to diabetes and oxidative stress. Journal of Enzyme Inhibition Medicinal Chemistry. 27, 578– 586. https://doi.org/10.3109/147563....
 
79.
Sayed, A.M., Khattab, A.R., Aboulmagd, A.M., Hassan, H.M., Rateb, M.E., Zaid, H., Abdelmohsen, U.R., 2020. Nature as a treasure trove of potential anti-SARS-CoV drug leads: a structural/mechanistic rationale. RSC Advances. 10, 19790–19802. https://doi.org/10.1039/D0RA04....
 
80.
Shin, D., Mukherjee, R., Grewe, D., Bojkova, D., Baek, K., Bhattacharya, A., Schulz, L., Widera, M., Mehdipour, A.R., Tascher, G.J.N., 2020. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature Medicine. 587, 657–662. https://doi.org/10.1038/s41586....
 
81.
Singh, P., Pathania, S., Rawal, R., 2020. Exploring RdRp-remdesivir interactions to screen RdRp inhibitors for the management of novel coronavirus 2019-nCoV. SAR and QSAR in Environmental Research. 31, 857–867. https://doi.org/10.1080/106293....
 
82.
Son, J.K., Son, M.J., Lee, E., Moon, T.C., Son, K.H., Kim, C.H., Kim, H.P., Kang, S.S., Chang, H.W., 2005. Ginkgetin, a Biflavone from Ginko biloba leaves, inhibits cyclooxygenases-2 and 5- lipoxygenase in mouse bone marrow-derived mast cells. Biological and Pharmaceutical Bulletin. 28, 2181–2184. https://doi.org/10.1248/ bpb.28.2181.
 
83.
Sun, C.M., Syu, W.J., Huang, Y.T., Chen, C.C., Ou, J.C., 1997. Selective cytotoxicity of ginkgetin from Selaginella moellendorffii. Journal of Natural Products. 60, 382–384. https://doi.org/10.1021/np9606... Tamura, S., Yang, G.M., Yasueda, N., Matsuura, Y., Komoda, Y., Murakami, N., 2010. Tellimagrandin I, HCV invasion inhibitor from Rosae rugosae Flos. Bioorganic Medicinal Chemistry Letters. 20, 1598–1600. https://doi.org/10.1016/j.bmcl....
 
84.
Tito, A., Colantuono, A., Pirone, L., Pedone, E.M., Intartaglia, D., Giamundo, G., Conte, I., Vitaglione, P., Apone, F., 2020. Pomegranate Peel Extract as an Inhibitor of SARS-CoV-2 Spike Binding to Human ACE2 Receptor ( in vitro): A Promising Source of Novel Antiviral Drugs. Frontiers in Chemistry. 9, 638187. https:// doi.org/10.3389/fchem.2021.638....
 
85.
Trott, O., Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry. 31, 455–461. https://doi.org/10.1002/jcc.21....
 
86.
Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., Kopple, K.D., 2002. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry. 45, 2615–2623. https://doi.org/10.1021/jm0200....
 
87.
Venkataraman, S., Prasad, B.V., Selvarajan, R., 2018. RNA dependent RNA polymerases: insights from structure, function and evolution. Viruses. 10, 76. https://doi.org/10.3390/v10020....
 
88.
V’kovski Philip, Kratzel Annika, Steiner Silvio, Stalder Hanspeter, Thiel Volker., 2020. Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology. 19, 155–170. https://doi.org/10.1038/s41579....
 
89.
Wang, M., Li, Y., Hu, X., 2018. Chebulinic acid derived from triphala is a promising antitumour agent in human colorectal carcinoma cell lines. BMC Complementary Alternative Medicine. 18, 342. https:// doi.org/10.1186/s12906-018-241....
 
90.
Williams, C.A., Harborne, J.B., Tomas-Barberan, F.A., 1987. Biflavonoids in the primitive monocots Isophysis tasmanica and Xerophyta plicata. Phytochemistry. 26(9), 2553–2555. https://doi.org/10.1016/S0031-....
 
91.
Wilsky, S., Sobotta, K., Wiesener, N., Pilas, J., Althof, N., Munder, T., Wutzler, P., Henke, A., 2012. Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication. Archives of Virology. 157, 259–269. https://doi.org/10.1007/s00705....
 
92.
Woldemichael, G.M., Singh, M.P., Maiese, W.M., Timmermann, B.N., 2003. Constituents of antibacterial extract of Caesalpinia paraguar- iensis Burk. Zeitschrift für Naturforschung C. 58, 70–75. https:// doi.org/10.1515/znc-2003-1-213.
 
93.
Xia Shuai, Liu Meiqin, Wang Chao, Xu Wei, Lan Qiaoshuai, Feng Siliang, Qi Feifei, Bao Linlin, Du Lanying, Liu Shuwen, Qin Chuan, Sun Fei, Shi Zhengli, Zhu Yun, Jiang Shibo, Lu Lu., 2020. Inhibition of SARS-CoV-2 (previously 2019- nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Research. 30, 343–355. https://doi.org/10.1038/s41422....
 
94.
Yang, S.Y., 2010. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discovery Today. 15, 444–450. https://doi.org/10.1016/j.drud....
 
95.
Yavuz, S., Ünal, S., 2020. Antiviral treatment of COVID-19. Turkish Journal of Medical Sciences. 50, 611–619. https://doi.org/10.3906/sag-20....
 
96.
Yi, L., Li, Z., Yuan, K., Qu, X., Chen, J., Wang, G., Zhang, H., Luo, H., Zhu, L., Jiang, P., 2004. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. Journal of virology. 78, 11334–11339. https://doi.org/10.1128/jvi.78....
 
97.
Zheng, S., Laraia, L., O'connor, C.J., Sorrell, D., Tan, Y.S., Xu, Z., Venkitaraman, A.R., Wu, W., Spring, D.R., 2012. Synthesis and biological profiling of tellimagrandin I and analogues reveals that the medium ring can significantly modulate biological activity. Organic & Biomolecular Chemistry. 10, 2590–2593. https://doi.org/10.1039/ C2OB25065A.
 
98.
Zhu, W., Chen, C.Z., Gorshkov, K., Xu, M., Lo, D.C., Zheng, W., 2020. RNA-dependent RNA polymerase as a target for COVID-19 drug dis- covery. SLAS DISCOVERY: Advancing the Science of Drug Discovery. 25, 1141–1151. https://doi.org/10.1177/247255....