REVIEW PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spread rapidly worldwide, freezes all sectors, and was declared a life-threatening disease by the World Health Organization on Jan 30, 2020. So far, no specific drugs are identified or approved for treating SARS-CoV-2. In the past few years, nanomaterials are in the limelight for their ability to deliver the drugs effectively and selectively to target like siRNA, the prime infection sites, and benefiting us to visualize the particular regions, treatment reactions via non-intruding imaging techniques. As intranasal delivery interacts directly to the infection site with minimal side effects on the healthy cell, we postulate to administer a mixture of few polyherbal formulations like the golden spice curcumin, sitopaladi churna (SPC), and kaempferol in zein-chitosan nanoparticles as a life-saving measure for treating Coronavirus disease (COVID-19) cases. This viewpoint will shed light on the antiviral role of curcumin, SPC, and kaempferol zein-chitosan nanoparticle to modulate immune responses and observe its curative approach to the current pandemic COVID.
 
REFERENCES (29)
1.
Ahirwar, B., Ahirwar, D., Ram, A. 2008. Antihistaminic effect of Sitopaladi churna extract. Res J Pharm Technol. 2, 89–92. DOI: 10.5958/0974-360X.
 
2.
Alizadeh, F., Javadi, M., Karami, A.A., Gholaminejad, F., Kavianpour, M., Haghighian, H.K. 2018. Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: a randomized clinical trial. Phytother Res. 32, 514–521. doi: 10.1002/ptr.5998.
 
3.
Avasarala, S., Zhang, F., Liu, G., Wang, R., London, S.D., et al. 2013. Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PLoS ONE 8(2), e57285. doi: 10.1371/journal.pone.0057285.
 
4.
Aziz, N., Kim, M.Y., Cho, J.Y. 2018. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 28, 225, 342-358. doi: 10.1016/j.jep.2018.05.019.
 
5.
Baspinar, Y., Üstündas, M., Bayraktar, O., Sezgin, C. 2018. Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterization. Saudi Pharm J. 26(3), 323-334. https://doi.org/10.1016/j.jsps....
 
6.
Cao, L., Luo, J., Tu, K., Wang, L.Q., Jiang, H. 2014. Generation of nano-sized core–shell particles using a coaxialtri-capillary electrospray-template removal method. Coll Surf B: Biointerf. 115, 212-218. doi: 10.1016/j.colsurfb.2013.11.046.
 
7.
Caughey, G.H., Raymond, W.W., Wolters, P.J. 2000. Angiotensin II generation by mast cell alpha- and beta-chymases. Biochim Biophys Acta. 1480(1–2), 245–257. doi: 10.1016/s0167-4838(00)00076-5.
 
8.
Channappanavar, R., Perlman, S. 2017. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 39, 529–539. doi: 10.1007/s00281-017-0629-x.
 
9.
DiSilvestro, R.A., Joseph, E., Zhao, S. et al. 2012. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J. 11, 79. https://doi.org/10.1186/1475-2....
 
10.
Fan, E., Beitler, J.R, Brochard L, et al. 2020. COVID-19-associated acute respiratory distress syndrome: is a different management approach warranted? Lancet Respir Med. 8(8), 816-821. doi: 10.1016/S2213-2600(20)30304-0.
 
11.
Gordon, S., Saupe, A., McBurney, W., Rades, T., Hook, S. 2008. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery. J. Pharm. Pharmacol., 60, 1591-1600. doi: 10.1211/jpp/60.12.0004.
 
12.
Han, Y., Chin Tan, T.M., Lim, L.Y. 2008. In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression. Toxicol Appl Pharmacol. 230(3), 283-289. doi: 10.1016/j.taap.2008.02.026.
 
13.
Jani, M.M., Thaker, H.J., Satakopan, S. 1980. Identification of ingredients in Sitopaladi churna. Indian Drugs. 17, 311.
 
14.
Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., Soetjipto, S. 2020. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant Compounds by Molecular Docking Study. Preprints , 202030226. doi: 10.20944/preprints202003.0226.v1.
 
15.
Kobayashi, K., Wei, J., Iida, R., Ijiro, K., Niikura, K. 2014. Surface engineering of nanoparticles for therapeutic applications. Polym J. 46, 460–8. https://doi.org/10.1038/pj.201....
 
16.
Lai, Y., Yan, Y., Liao, S., Li, Y., Ye, Y., Liu, N., Zhao, F., Xu, P. 2020. 3D-quantitative structure-activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase. Arch Pharm Res. 43(5), 489-502. doi: 10.1007/s12272-020-01230-5.
 
17.
Liu, Z., Ying, Y. 2020. The inhibitory effect of curcumin on virus-induced cytokine storm and its Potential use in the associated severe pneumonia. Front Cell Dev Biol. 8, 479. doi: 10.3389/fcell.2020.00479.
 
18.
Makhija, I.K., Shreedhara, C.S., Ram, H.A. 2013. Mast cell stabilization potential of Sitopaladi churna: An ayurvedic formulation. Phcog Res. 5, 306-8. doi: 10.4103/0974-8490.118824.
 
19.
Matthay, M., Zimmerman, G. 2005. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Resp Cell Mol Biol. 33, 319–327. doi: 10.1165/rcmb.F305.
 
20.
Mora-Huertas, C.E., Fessi, H., Elaissari, A. 2010. Polymer-based nanocapsules for drug delivery. Int J Pharm. 385(1-2), 113-42. https://doi.org/10.1016/j.ijph....
 
21.
Peiris, J.S., Guan, Y., Yuen, K.Y. 2004. Severe acute respiratory syndrome. Nat Med. 10(12 Suppl), S88-97.
 
22.
Praditya, D., Kirchhoff, L., Brüning, J., Rachmawati, H., Steinmann, J., Steinmann, E. 2019. Anti-infective properties of the golden spice curcumin. Front. Microbiol. 10, 912. doi: 10.3389/fmicb.2019.00912.
 
23.
Rastogi, S., Pandey, D.N., Singh, R.H. 2020. COVID-19 pandemic: A pragmatic plan for Ayurveda intervention. J Ayurveda Integr Med. 23, S0975-9476(20)30019-X.
 
24.
Ren, J., Lu, Y., Qian, Y., Chen, B., Wu, T., Ji, G. 2019. Recent progress regarding kaempferol for the treatment of various diseases. Exp Ther Med. 18(4), 2759-2776. https://doi.org/10.3892/etm.20....
 
25.
Savarino, A., Boelaert, J.R., Cassone, A., Majori, G., Cauda, R. 2003. Effects of chloroquine on viral infections: an old drug against today's diseases?. Lancet Infect Dis. 3, 722-7. doi: 10.1016/s1473-3099(03)00806-5.
 
26.
Shaikh, J., Ankola, D.D., Beniwal, V., Singh, D., Ravi Kumar, M.N.V. 2009. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 37(3–4), 223-230. DOI: 10.1016/j.ejps.2009.02.019.
 
27.
Soni, V. K., Mehta, A., Ratre, Y. K., et al. 2020. Curcumin, a traditional spice component, can hold the promise against COVID-19? European Journal of Pharmacology, 173551. doi:10.1016/j.ejphar.2020.173551.
 
28.
Sultana, S., Khan, M.R., Kumar, M., Kumar, S., Ali, M. 2013. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target. 21(2), 107-125. doi: 10.3109/1061186X.2012.712130.
 
29.
Xu, Z., Peng, C., Shi, Y., Zhu, Z., Mu, K., Wang, X., Zhu, W. 2020. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. In.: bioRxiv. doi: https://doi.org/10.1101/2020.0....