Roles of citrus secondary metabolites in tree and fruit defence against pests and pathogens
More details
Hide details
Department of Horticulture, European University of Lefke, Turkey
Ibrahim Kahramanoglu   

Department of Horticulture, European University of Lefke, Gemikonagi, Northern Cyprus, 99780, via Mersin 10, Turkey
Submission date: 2021-08-17
Final revision date: 2021-08-25
Acceptance date: 2021-08-26
Online publication date: 2021-08-27
Publication date: 2021-10-05
NRFHH 2021;1(2):51–62
Plants have evolved several mechanisms to protect themselves from different biotic and abiotic challenges, including pest and pathogen attacks. One of the most important mechanisms is the secondary metabolites (SM) (terpenes, phenolics and nitrogen/sulphur-containing compounds). The plants have synthesised a diverse group of compounds in different concentrations (mostly in very small quantities) and have important roles in plant defence, survival, adaptation, and reproduction. Citrus crops are among the most essential cultivated fruit groups and are rich in terpenoids and phenolics. Besides the well-known benefits of these compounds on human health, they have a significant role in plant/fruit defence against biotic and abiotic challenges. This review aims to highlight the importance of these compounds (such as limonene, citral, saponin, hesperidin, quercetin, tangeritine, caffeic acid, p-coumaric acid, scoparone, etc.) and discuss their roles in tree and fruit defence against pests and pathogens. In today’s world, where there is an essential human impact on nature, a need is raised to reduce pesticides against pests and pathogens. Therefore, understanding the roles of these SM and their induction is believed to have a significant positive impact on the production and/or storage of horticultural crops and may help reduce the use of synthetic agrochemicals. In line with this information, present review was aimed to provide a background information for researchers, farmers, horticulturalists and technology developers about the potential benefits of SM on plant/fruit defence and a guideline about their induction.
Afreen, F., Zobayed, S. M. A., & Kozai, T. (2005). Spectral quality and UV-B stress stimulate glycyrrhizin concentration of Glycyrrhiza uralensis in hydroponic and pot system. Plant Physiology and Biochemistry, 43(12), 1074-1081.
Agrawal, A. A., Tuzun, S., & Bent, E. (Eds.). (1999). Induced plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture (No. Sirsi) i9780890542422). St. Paul: APS Press.
Ahmed, W., & Azmat, R. (2019). Citrus: an ancient fruits of promise for health benefits. Citrus-Health Benefits and Production Technology.
An, J., Kim, S. H., Bahk, S., Vuong, U. T., Nguyen, N. T., Do, H. L., Kim, S. H., & Chung, W. S. (2021). Naringenin Induces Pathogen Resistance Against Pseudomonas syringae Through the Activation of NPR1 in Arabidopsis. Frontiers in plant science, 12.
Arcas, M. C., Botía, J. M., Ortuño, A. M., & Del Río, J. A. (2000). UV irradiation alters the levels of flavonoids involved in the defence mechanism of Citrus aurantium fruits against Penicillium digitatum. European Journal of Plant Pathology, 106(7), 617-622.
Assini, J. M., Mulvihill, E. E., & Huff, M. W. (2013). Citrus flavonoids and lipid metabolism. Current opinion in lipidology, 24(1), 34-40.
Balandrin, M. F., & Klocke, J. A. (1988). Medicinal, aromatic, and industrial materials from plants. In Medicinal and Aromatic Plants I (pp. 3-36). Springer, Berlin, Heidelberg.
Berini, J. L., Brockman, S. A., Hegeman, A. D., Reich, P. B., Muthukrishnan, R., Montgomery, R. A., & Forester, J. D. (2018). Combinations of abiotic factors differentially alter production of plant secondary metabolites in five woody plant species in the boreal-temperate transition zone. Frontiers in plant science, 9, 1257.
Bhatla, S. C., & Lal, M. A. (2018). Plant physiology, development and metabolism. Springer Nature Singapore Pte Ltd.
Blodgett, J. T., Eyles, A., & Bonello, P. (2007). Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diplodia scrobiculata. Tree physiology, 27(4), 511-517.
Bostock, R. M., Wilcox, S. M., Wang, G., & Adaskaveg, J. E. (1999). Suppression ofMonilinia fructicolacutinase production by peach fruit surface phenolic acids. Physiological and Molecular Plant Pathology, 54(1-2), 37-50.
Boz, H. (2015). p‐Coumaric acid in cereals: presence, antioxidant and antimicrobial effects. International Journal of Food Science & Technology, 50(11), 2323-2328.
Camm, E. L., McCallum, J., Leaf, E., & Koupai‐Abyazani, M. R. (1993). Cold‐induced purpling of Pinus contorta seedlings depends on previous daylength treatment. Plant, Cell & Environment, 16(6), 761-764.
Caputi, L., & Aprea, E. (2011). Use of terpenoids as natural flavouring compounds in food industry. Recent patents on food, nutrition & agriculture, 3(1), 9-16.
Chutia, M., Bhuyan, P. D., Pathak, M. G., Sarma, T. C., & Boruah, P. (2009). Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. LWT-Food Science and Technology, 42(3), 777-780.
Clemensen, A. K., Provenza, F. D., Hendrickson, J. R., & Grusak, M. A. (2020). Ecological Implications of Plant Secondary Metabolites-Phytochemical Diversity Can Enhance Agricultural Sustainability. Frontiers in Sustainable Food Systems, 4, 233.
Craig, W. J. (1997). Phytochemicals: guardians of our health. Journal of the American Dietetic Association, 97(10), S199-S204.
Crozier, A., Clifford, M. N., & Ashihara, H. (Eds.). (2008). Plant secondary metabolites: occurrence, structure and role in the human diet. John Wiley & Sons.
de Melo Cazal, C., de Cássia Domingues, V., Batalhão, J. R., Bueno, O. C., Rodrigues Filho, E., da Silva, M. F. G. F., & Fernandes, J. B. (2009). Isolation of xanthyletin, an inhibitor of ants’ symbiotic fungus, by high-speed counter-current chromatography. Journal of Chromatography A, 1216(19), 4307-4312.
Demmig-Adams, B., Stewart, J. J., López-Pozo, M., Polutchko, S. K., & Adams, W. W. (2020). Zeaxanthin, a molecule for photoprotection in many different environments. Molecules, 25(24), 5825.
Develey‐Rivière, M. P., & Galiana, E. (2007). Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytologist, 175(3), 405-416.
Enan, E. (2001). Insecticidal activity of essential oils: octopaminergic sites of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(3), 325-337.
Engelmeier, D., & Hadacek, F. (2006). Antifungal natural products: assays and applications. Advances in Phytomedicine, 3, 423-467.
Eyles, A., Bonello, P., Ganley, R., & Mohammed, C. (2010). Induced resistance to pests and pathogens in trees. New Phytologist, 185(4), 893-908.
Ezeabara, C. A., Okeke, C. U., Aziagba, B. O., Ilodibia, C. V. & Emeka, A. N. (2014). Determination of Saponin Content of Various Parts of Six Citrus species. International Research Journal of Pure & Applied Chemistry 4(1): 137-143.
FAOSTAT (2021). FAO Statistical Web Page. Available at: (Accessed on 31.07.2021).
Freeman, B. C., & Beattie, G. A. (2008). An overview of plant defenses against pathogens and herbivores. The Plant Health Instructor.
Galeotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44-48.
Gershenzon, J., & Croteau, R. (1992). Terpenoids. In Herbivores: Their interactions with secondary plant metabolites, second edition, vol. 1: The chemical participants (pp. 165-219). Academic Press.
Gershenzon, J., & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature chemical biology, 3(7), 408-414.
Harborne, J. B. (2014). Introduction to ecological biochemistry. (fourth ed.), Academic Press, London.
Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481-504.
Hernandez, I., and Munne-Bosch, S. (2012). Naringenin inhibits seed germination and seedling root growth through a salicylic acid-independent mechanism in Arabidopsis thaliana. Plant Physiol. Biochem. 61, 24–28. doi:
Hijaz, F., El-Shesheny, I., & Killiny, N. (2013). Herbivory by the insect Diaphorina citri induces greater change in citrus plant volatile profile than does infection by the bacterium, Candidatus Liberibacter asiaticus. Plant signaling & behavior, 8(10), e25677.
Hu, X., Neill, S., Cai, W., & Tang, Z. (2003). Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid‐induced saponin accumulation in suspension‐cultured cells of Panax ginseng. Physiologia Plantarum, 118(3), 414-421.
Hussain, M., Debnath, B., Qasim, M., Bamisile, B. S., Islam, W., Hameed, M. S., Wang, L., & Qiu, D. (2019). Role of saponins in plant defense against specialist herbivores. Molecules, 24(11), 2067.
Ignat, I., Volf, I., & Popa, V. I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food chemistry, 126(4), 1821-1835.
Iranshahi, M., Rezaee, R., Parhiz, H., Roohbakhsh, A., & Soltani, F. (2015). Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life sciences, 137, 125-132.
Jaakola, L., & Hohtola, A. (2010). Effect of latitude on flavonoid biosynthesis in plants. Plant, cell & environment, 33(8), 1239-1247.
Keukens, E. A., de Vrije, T., van den Boom, C., de Waard, P., Plasman, H. H., Thiel, F., Chupin, V., Jongen, W. M. F., & de Kruijff, B. (1995). Molecular basis of glycoalkaloid induced membrane disruption. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1240(2), 216-228.
Kim, J. J., Ben-Yehoshua, S., Shapiro, B., Henis, Y., & Carmeli, S. (1991). Accumulation of scoparone in heat-treated lemon fruit inoculated with Penicillium digitatum Sacc. Plant Physiology, 97(3), 880-885.
Kindl, H. (2000). Interplay Botrytis-plant: Plant stilbene synthase gene promoters responsive to Botrytis-made compounds and Botrytis chaperones sensitive to plant stilbene phytoalexins. In 12th International Botrytis Symposium, Reims, France (pp. 3-7).
Kiraly, L., Barna, B., & Király, Z. (2007). Plant resistance to pathogen infection: forms and mechanisms of innate and acquired resistance. Journal of Phytopathology, 155(7‐8), 385-396.
Kliewer, W. M. (1977). Influence of temperature, solar radiation and nitrogen on coloration and composition of Emperor grapes. American Journal of Enology and Viticulture, 28(2), 96-103.
Kroymann, J. (2011). Natural diversity and adaptation in plant secondary metabolism. Current opinion in plant biology, 14(3), 246-251.
Kurepa, J., Shull, T. E., & Smalle, J. A. (2016). Quercetin feeding protects plants against oxidative stress. F1000 Research, 5(2430), 2430.
Kurita, N., Miyaji, M., Kurane, R., Takahara, Y., & Ichimura, K. (1979). Antifungal activity and molecular orbital energies of aldehyde compounds from oils of higher plants. Agricultural and Biological Chemistry, 43(11), 2365-2371.
Ladaniya, M. S. (2008). Chapter 16 – Postharvest Diseases and their Management In: Ladanyia, M., & Ladaniya, M. (Eds) Citrus fruit: biology, technology and evaluation. Academic press. Pages 417-449.
Lattanzio, V., Cardinali, A., Ruta, C., Fortunato, I. M., Lattanzio, V. M., Linsalata, V., & Cicco N. (2009). Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ. Exp. Bot. 65: 54-62.
Leadbeater, A., & Staub, T. (2007). Exploitation of induced resistance: a commercial perspective. In: Walters, D., Newton, A., Lyon, G., (eds). Induced resistance for plant defence: a sustainable approach to crop protection. Oxford, UK: Blackwell Publishing, 229-241.
Lev-Yadun, S., & Gould, K. S. (2008). Role of anthocyanins in plant defence. In Anthocyanins (pp. 22-28). Springer, New York, NY.
Liang, Z., Ma, Y., Xu, T., Cui, B., Liu, Y., Guo, Z., & Yang, D. (2013). Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza bunge hairy roots. PloS one, 8(9), e72806.
Likić, S., Šola, I., Ludwig-Müller, J., & Rusak, G. (2014). Involvement of kaempferol in the defence response of virus infected Arabidopsis thaliana. European journal of plant pathology, 138(2), 257-271.
Liu, Y., Xue, A., Wang, S., Hao, Y., Cui, M., Liu, L., & Luo, L. (2020). Metabolic response of Citrus limon to Asian citrus psyllid infestation revealed by EESI-MS and HPLC. Analytical Biochemistry, 609, 113973.
Luo, M., Jiang, L.K., & Zou, G. L.(2002). The mechanism of loss of germination ability of A. flavus spore with citral. Zhongguo Sheng wu hua xue yu fen zi Sheng wu xue bao= Chinese Journal of Biochemistry and Molecular Biology, 18(2), 227-232.
M’hiri, N., Ioannou, I., Ghoul, M., & Mihoubi Boudhrioua, N. (2017). Phytochemical characteristics of citrus peel and effect of conventional and nonconventional processing on phenolic compounds: A review. Food Reviews International, 33(6), 587-619.
Makni, M., Jemai, R., Kriaa, W., Chtourou, Y., & Fetoui, H. (2018). Citrus limon from Tunisia: Phytochemical and physicochemical properties and biological activities. BioMed research international, 2018.
Mangels, A. R., Holden, J. M., Beecher, G. R., Forman, M. R., & Lanza, E. (1993). Carotenoid content of fruits and vegetables: an evaluation of analytic data. Journal of the American Dietetic Association, 93(3), 284-296.
Manuka, R., Karle, S. B., & Kumar, K. (2019). OsWNK9 mitigates salt and drought stress effects through induced antioxidant systems in Arabidopsis. Plant Physiology Reports, 24(2), 168-181.
Martínez, J. A. (2012). Natural Fungicides Obtained from Plants, Fungicides for Plant and Animal Diseases, Dr. Dharumadurai Dhanasekaran (Ed.), ISBN: 978-953-307-804-5.
Matsukawa, T., Asai, T., & Kajiyama, S. I. (2017). Metabolic changes during defense responses against wound stresses in Citrus plants. Citrus pathology, 55-69.
McELROY, J. S., & Kopsell, D. A. (2009). Physiological role of carotenoids and other antioxidants in plants and application to turfgrass stress management. New Zealand Journal of Crop and Horticultural Science, 37(4), 327-333.
Mendoza, N., & Silva, E. M. E. (2018). Introduction to phytochemicals: secondary metabolites from plants with active principles for pharmacological importance. Phytochemicals: source of antioxidants and role in disease prevention, 25.
Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10), 16240-16265.
Nathan, S. S., Hisham, A., & Jayakumar, G. (2008). Larvicidal and growth inhibition of the malaria vector Anopheles stephensi by triterpenes from Dysoxylum malabaricum and Dysoxylum beddomei. Fitoterapia, 79(2), 106-111.
NCBI (2021). The National Center for Biotechnology Information. Available at: (Accessed on 30.07.2021).
Okwu, D. E. (2005). Phytochemicals, vitamins and mineral contents of two Nigerian medicinal plants. Int. J. Mol. Med. Adv. Sci, 1(4), 375-381.
Okwu, D. E. (2008). Citrus fruits: A rich source of phytochemicals and their roles in human health. Int J Chem Sci, 6(2), 451-71.
Okwu, D. E., & Emenike, I. N. (2006). Evaluation of the phytonutrients and vitamin contents of Citrus fruits. Int. J. Mol. Med. Adv. Sci, 2(1), 1-6.
Orlita, A., Sidwa‐Gorycka, M., Paszkiewicz, M., Malinski, E., Kumirska, J., Siedlecka, E. M., & Stepnowski, P. (2008). Application of chitin and chitosan as elicitors of coumarins and furoquinolone alkaloids in Ruta graveolens L. (common rue). Biotechnology and Applied Biochemistry, 51(2), 91-96.
Ortuno, A., Arcas, M. C., Botia, J. M., Fuster, M. D., & Del Río, J. A. (2002). Increasing resistance against Phytophthora citrophthora in tangelo Nova fruits by modulating polymethoxyflavones levels. Journal of agricultural and food chemistry, 50(10), 2836-2839.
Ortuno, A., Botia, J. M., Fuster, M. D., Porras, I., García-Lidón, A., & Del Río, J. A. (1997). Effect of scoparone (6, 7-dimethoxycoumarin) biosynthesis on the resistance of tangelo Nova, Citrus paradisi, and Citrus aurantium fruits against Phytophthora parasitica. Journal of agricultural and food chemistry, 45(7), 2740-2743.
Rao, A. V., Ray, M. R., & Rao, L. G. (2006). Lycopene. Advances in food and nutrition research, 51, 99-164.
Rao, M. J., Ding, F., Wang, N., Deng, X., & Xu, Q. (2018). Metabolic mechanisms of host species against citrus Huanglongbing (Greening Disease). Critical Reviews in Plant Sciences, 37(6), 496-511.
Rattan, R. S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop protection, 29(9), 913-920.
Reem, N. T., Pogorelko, G., Lionetti, V., Chambers, L., Held, M. A., Bellincampi, D., & Zabotina, O. A. (2016). Decreased polysaccharide feruloylation compromises plant cell wall integrity and increases susceptibility to necrotrophic fungal pathogens. Frontiers in plant science, 7, 630.
Reymond, P., Weber, H., Damond, M., & Farmer, E. E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell, 12(5), 707-719.
Riaz, U., Kharal, M. A., Murtaza, G., uz Zaman, Q., Javaid, S., Malik, H. A., Aziz, H., & Abbas, Z. (2019). Prospective roles and mechanisms of caffeic acid in counter plant stress: A mini review. Pakistan Journal of Agricultural Research, 32(1), 8.
Rohmer, M. (1999). The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Natural product reports, 16(5), 565-574.
Rosazza, J. P. N., Huang, Z., Dostal, L., Volm, T., & Rousseau, B. (1995). Biocatalytic transformations of ferulic acid: an abundant aromatic natural product. Journal of industrial microbiology and biotechnology, 15(6), 457-471.
Rossiter, M., Schultz, J. C., & Baldwin, I. T. (1988). Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology, 69(1), 267-277.
Schaller, A., & Ryan, C. A. (1996). Systemin–a polypeptide defense signal in plants. BioEssays, 18(1), 27-33.
Shumbe, L., Bott, R., & Havaux, M. (2014). Dihydroactinidiolide, a high light-induced beta-carotene derivative that can regulate gene expression and photoacclimation in Arabidopsis. Molecular Plant, 7(7), 1248-51.
Singh, P., Arif, Y., Bajguz, A., & Hayat, S. (2021). The role of quercetin in plants. Plant Physiology and Biochemistry.
Solíz-Guerrero, J. B., De Rodriguez, D. J., Rodríguez-García, R., Angulo-Sánchez, J. L., & Méndez-Padilla, G. (2002). Quinoa saponins: concentration and composition analysis. Trends in new crops and new uses, 110-114.
Soloway, S. B. (1976). Naturally occurring insecticides. Environmental Health Perspectives, 14, 109.
Storey, K. B., Baust, J. G., & Buescher, P. (1981). Determination of water “bound” by soluble subcellular components during low-temperature acclimation in the gall fly larva, Eurosta solidagensis. Cryobiology, 18(3), 315-321.
Strzałka, K., Kostecka-Gugała, A., & Latowski, D. (2003). Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology, 50(2), 168-173.
Sun, Y., Qiao, L., Shen, Y., Jiang, P., Chen, J., & Ye, X. (2013). Phytochemical profile and antioxidant activity of physiological drop of citrus fruits. Journal of food science, 78(1), C37-C42.
Suzuki, T., Morishita, T., Kim, S. J., Park, S. U., Woo, S. H., Noda, T., & Takigawa, S. (2015). Physiological roles of rutin in the buckwheat plant. Japan Agricultural Research Quarterly: JARQ, 49(1), 37-43.
Szakiel, A., Pączkowski, C., & Henry, M. (2011). Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews, 10(4), 471-491.
Tamer, C. E., Suna, S., & Özcan-Sinir, G. (2019). Toxicological Aspects of Ingredients Used in Nonalcoholic Beverages. In Non-Alcoholic Beverages (pp. 441-481). Woodhead Publishing.
Taurino, M., Ingrosso, I., D’amico, L., De Domenico, S., Nicoletti, I., Corradini, D., & Giovinazzo, G. (2015). Jasmonates elicit different sets of stilbenes in Vitis vinifera cv. Negramaro cell cultures. SpringerPlus, 4(1), 1-11.
Treutter, D. (2006). Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters, 4(3), 147-157.
Ujváry, I. (2010). Pest control agents from natural products. In Hayes' Handbook of Pesticide Toxicology (pp. 119-229). Academic Press.
Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64(1), 3-19.
Wrolstad, R. E. (2004). Symposium 12: interaction of natural colors with other ingredients. Anthocyanin pigments-Bioactivity and coloring properties J Food Sci, 69, C419-C421.
Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762.
Yang, W., Xu, X., Li, Y., Wang, Y., Li, M., Wang, Y., & Chu, Z. (2016). Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PloS one, 11(1), e0146910.
Yuan, R., Kender, W., & Burns, J. (2003). Young fruit and auxin transport inhibitors affect the response of mature ‘Valencia’ oranges to abscission materials via changing endogenous plant hormones. Journal of the American Society for Horticultural Science, 128 (3), 302-308.
Yue, Y., Shen, P., Xu, Y., & Park, Y. (2019). p‐Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans. Journal of the Science of Food and Agriculture, 99(3), 1190-1197.
Yumol, J. L., & Ward, W. E. (2018). The polyphenolic compound hesperidin and bone protection. In Polyphenols: Mechanisms of Action in Human Health and Disease (pp. 431-440). Academic Press.
Zandalinas, S. I., Sales, C., Beltrán, J., Gómez-Cadenas, A., & Arbona, V. (2017). Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Frontiers in plant science, 7, 1954.
Zaynab, M., Sharif, Y., Abbas, S., Afzal, M. Z., Qasim, M., Khalofah, A., Ansari, M. J., Khan, K. A., Tao, L., & Li, S. (2021). Saponin toxicity as key player in plant defence against pathogens. Toxicon, 193, 21–27.
Zenk, M. H., & Juenger, M. (2007). Evolution and current status of the phytochemistry of nitrogenous compounds. Phytochemistry, 68(22-24), 2757-2772.
Zhang, M., Wang, J., Luo, Q., Yang, C., Yang, H., & Cheng, Y. (2021). CsMYB96 enhances citrus fruit resistance against fungal pathogen by activating salicylic acid biosynthesis and facilitating defense metabolite accumulation. Journal of Plant Physiology, 264, 153472-153472.
Zhang, Q., Zhai, J., Shao, L., Lin, W., & Peng, C. (2019). Accumulation of anthocyanins: an adaptation strategy of Mikania micrantha to low temperature in winter. Frontiers in plant science, 10, 1049.
Zillich, O. V., Schweiggert‐Weisz, U., Eisner, P., & Kerscher, M. (2015). Polyphenols as active ingredients for cosmetic products. International journal of cosmetic science, 37(5), 455-464.
Zoratti, L., Karppinen, K., Luengo Escobar, A., Häggman, H., & Jaakola, L. (2014). Light-controlled flavonoid biosynthesis in fruits. Frontiers in plant science, 5, 534.
Zu, Y. G., Tang, Z. H., Yu, J. H., Liu, S. G., Wang, W., & Guo, X. R. (2003). Different responses of camptothecin and 10-hydroxycamptothecin to heat shock in Camptotheca acuminata seedlings.