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ABSTRACT: Plant biodiversity is endowed with a huge composition and variability of active
molecules known for their therapeutic effects against several diseases. In this current work,
several phenolic compounds are subject of in silico evaluation of their interactions with six severe
acute respiratory syndrome coronavirus (SARS-CoV) enzymes to evaluate the binding mode
and mechanism of phenolic compounds interactions with SARS-CoV-2 enzymes. Results of
molecular docking and data analysis revealed that the importance of interactions was dependent
to the phenolic class of tested ligand; tannin, biflavone and flavonoid glycoside were the most
interactive classes. Among the top three ranked molecules recording lower binding energy against
each virus protein target, In conclusion, it was found that Amentoflavone, Dieckol, Bilobetin,
Punicalagin, Tellimagrandin-I, Tannic acid, Sciadopitysin, Ginkgetin and Chebulagic acid could
be a promising antiviral drug since they presentmore important binding energy than conventional
ones. Their interactions were justified by the Wenn diagram and Ramachandran plot. However,
these phenolic compounds recorded an important bioavailability score and found fulfilling most
of the drug-likeness criteria such as Lipinski’s rule. Clearly, all observations point to further
required works aiming to examine more deeply the possibility of using these molecules that could
be probably a subject of pre-clinical studies.

1. INTRODUCTION

The pandemic of Covid-19 is of an arising contagious
affection, called coronavirus affection 2019 or Covid-19, caused
by the coronavirus SARS-CoV-2 (Hui et al., 2020), which
appeared in Wuhan City on November 17th, 2019, in central
Chinese (Hubei Province), before spreading in numerous
countries. The World Health Organization (WHO) first
warnings the People’s Republic of China and its other member
countries, and also declares a state of public health exigency of
transnational concern on January 30th, 2020. On March 11th,
2020 (Chauhan, 2020), the new infection caused by this virus
was confirmed as a pandemic by the WHO, which called for
crucial protecting measures to prevent the overload of intensive
care services and to reinforce precautionary hygiene avoidness
of all physical contact kinds between people. Promotion of
social distancing, and prohibition of crowds and major events
as well as several travel restrictions, making people more aware
about hand washing as a crucial step of preventive measures,
implementation of quarantine, etc. In the whole world,
countless cancellations of sport and cultural events was causing
by this world-wide pandemic, several countries have put in
place containment measures to slow down the appearance of

new sources of contagion, even through the closure of their
borders. Moreover, the spread of this pandemic had a negative
impact on the social life of people as well as on the global
economic stability since it has further slowed down the social
and economic activities (Chauhan, 2020).

Currently, there are a little approved treatment that can treat
the infection caused by SARS-CoV-2, consequently, there is
an urgent claim for more chemotherapeutic agents to stop this
disease.

Coronaviruses (CoVs) are single-stranded positive-sense
RNA viruses that have enormous viral RNA genomes (V’kovski
et al., 2020). Several works have shown that SARS-CoV-
2 has a comparable genomic structure to that of beta-
coronaviruses (Andersen et al., 2020; Chauhan, 2020). It
consist of a 5′-untranslated region, a replicase complex that
encode non-structural proteins, a spike protein gene, envelope
protein gene, a membrane protein gene, a nucleocapsid protein
gene, and numerous unidentified non-structural open reading
frames (Islam et al., 2020; Qamar et al., 2020). Therefore,
and like other beta-coronaviruses, this virus can be terminated
by blocking these proteins. Chloroquine, hydroxychloroquine,
lopinavir/ritonavir, favipiravir, remdesivir, nitazoxanide, and
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ivermectin were the commonly used drugs, they have showed
their efficacy in inhibiting SARS-CoV-2 (Yavuz & Ünal,
2020). Those agents can selectively and potently inhibit
some nonstructural proteins like; the Main protease and
Helicase (Nsp13) (Mpro) Jin et al. (2020), Papain-like protease
(PLpro) (Rut et al., 2020) and structure proteins like (Xia
et al., 2020); protein S, protein E and protein M. Hence,
the search for new molecules with certain inhibitory activity
is very extensive and gaining interest of researchers to test
new molecules. In many previous studies, bioactive molecules
originated from natural resources have been proven to possess a
potential antiviral activity. In the present study, the main idea is
to focus on making a computational simulation of inhibition
effects of some phenolic compounds using Protein-Ligand
Molecular Docking approach. In recent years, the development
of drugs through mathematical and computational approaches
has become increasingly (Alamri et al., 2020; Bobrowski et al.,
2020; Nukoolkarn et al., 2008) .

2. MATERIALS AND METHODS

2.1. Proteins sequence preparaƟon

For this work, four enzymes are chosen as targets:
Main protease (Mpro) downloaded from the PDB database

encoded by 6LU7 (Jin et al., 2020) in a resolution of 2.16Å,
is also called chymotrypsin-like protease (3CLpro). It is
responsible for cleaving most of the polyprotein sites and the
results are non-structural proteins (nsps) that come together in
the replicase-transcriptase complex (RTC).

Papain-like protease (PLpro) taken from the PDB database
with code of 6WUU (Rut et al., 2020) with a resolution
of 2.79Å, cleaves the nonstructural protein 1-2, 2-3 and 3-
4 boundaries and works with main protease to cleave the
polyproteins into nsps.

Helicase (Nsp13) catalyses the unwinding of duplex oligonu-
cleotides into single strands in an NTP-dependent manner.
The SARS-CoV-2 helicase X-ray structure was built based on
6JYT (Jia et al., 2019) ccode in a resolution of 2.80Å.Therefore,
the ADP binding site (ADP site), and the nucleic acids binding
site (NCB site) were defined for small molecule docking.

RNA-dependent RNA polymerase (RdRP) downloaded
from the PDB database with code of 7BV2 in a resolution
of 2.50Å, catalyses the RNA replication from an RNA
template (Venkataraman et al., 2018). Specially, it catalysis the
RNA strand complementary synthesis to give template of RNA.
This contrasts with typical DNA-dependent RNA polymerases,
which used by all organisms to catalyse the transcription of RNA
from a DNA template. Thus, we defined two docking sites: the
RTP site, and the RNA site.

2.2. Ligand database preparaƟon

156 phenolic compounds and 9 antiviral drugs were
downloaded in three-dimensional (3D) illustration and SDF
structural data format from open database of National Institutes
of Health (https://pubchem.ncbi.nlm.nih.gov/) (Kim et al.,

2016). All these molecules are chosen by their reported antiviral
activities against several viruses as following; African swine fever
virus (ASFV) , Respiratory syncytial virus (RSV), Echovirus,
Enterovirus A71 (EV-A71), influenza A virus subtype H1N1
(A/H1N1), Influenza A virus subtype H6N1 (A/H6N1),
hepatitis C virus (HCV) , human immunodeficiency virus
(HIV), human respiratory syncytial virus (hRSV), Herpes
Simplex (HSV-1 & HSV-2), Porcine epidemic diarrhoea virus
(PEDV), severe acute respiratory syndrome coronavirus (SARS-
CoV) (Table S1, Appendix A Supplementary material).

2.3. Docking protocol

The proteins structures were downloaded as a Protein
database files and then transformed into Protein Data Bank
Partial Charge (PDBQT) format via MGLTools software (Trott
& Olson, 2010). Before docking, polar-hydrogen atoms were
included, and gasteiger charges were processed (Kong et al.,
2020). Autodock-vina was used carried out to the structure-
based virtual screening; the docking box was defined as the
center of native ligand coordinates with 30Å×30Å×30Å in
length to include the residues of complete cavity. MGLTools
was used to add hydrogens and prepare pdbqt files for proteins
and ligands with an exhaustiveness level at 12. The 2D
interaction was generated using the LIGPLOT+ software. The
validation of the best generated model was done by analysis of
Ramachandran plot generated in Ramachandran Plot server (h
ttps://zlab.umassmed.edu/bu/rama/).

2.4. Drug-likeness analysis by ADMET profiling

Absorption, distribution, metabolism, excretion, and tox-
icology (ADMET) were performed online by SwissADME
tools (Daina et al., 2017) (http://www.swissadme.ch/index.ph
p). Drug-likeness can provide the possibility for a phenolic
compounds to be developed as an oral drug with respect to
bioavailability by the assessment ofThe Lipinski (Lipinski et al.,
1997), Ghose (Ghose et al., 1999), Veber (Veber et al., 2002),
Egan (Egan et al., 2000) and Muegge (Muegge et al., 2001)
rule’s.

2.5. StaƟsƟcal analysis

Frequency distribution and heatmap were performed by
orange software version 3.27.1 (Demšar et al., 2013), input data
was generated from the (Table S1, Appendix A Supplementary
material).

3. RESULTS AND DISCUSSION

3.1. Effect of phenolic class on docking scores

Figure 1 demonstrated that the distributions frequency of
binding energy score among the different phenolic compounds
and SARS-CoV-2 enzymes pre-selected varies between -5 and
-12 kcal/mol. For Main protease, helicase (NCP site), RdRp
(RNA site), the higher binding scores were recorded between -8
and -7 Kcal/mol with 56.41%, 48.72%, 52.56% respectively.
As for the Helicase (ADP site), docking results show the lowest
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Table 1
Binding scores (kcal/mol) of the top three phenolic compounds against each protein target

Helicase (ADP site) Helicase (NCP site) RdRp (RNA site)
Amentoflavone -9 Punicalagin -10,9 Tannic acid -10,6
Dieckol -9 Tellimagrandin I -10,9 Punicalagin -10,8
Bilobetin -8,9 Tannic acid -10,8 Dieckol -10,1
Ritonavir -9,4 Ivermectin -9,7 Ritonavir -9,5

Papain-like protease Main protease RdRp (RTP site)
Dieckol -12,5 Sciadopitysin -10,1 Dieckol -12,6
Bilobetin -11,3 Amentoflavone -10 Chebulagic acid -11,7
Amentoflavone -11,2 Ginkgetin -9,8 Tannic acid -11,7
Indinavir -10,2 Remdesivir -8,4 Rupintrivir -10,8

scores distributed with 46.79% between -6 and -7 Kcal/mol.
41.67% of binding scores were recorded at -8 and -9 Kcal/mol
for papain like protease. Finally, the highest scores distribution
characterize RdRp (RTP site) with 39.74% between -9 and -10
Kcal/mol. .

The result of a hierarchical k-means clustering (20 clusters)
calculation is displayed in a heatmap (Figure 2) as a dendro-
gram, the row dendrogram shows the distance of similarity
between rows, and which node belong to which row. As a
result of clustering, Figure 2-A arranges the binding scores
of ligands according to their phenolic classes (-5.011 and -
12.60 kcal/mol), two principal clusters were manifested, the
first (c1) regroups the high scores, the second regroups the
low scores; ranging from -12 to -9 kcal/mol. Subcluster C1
generates four phenolic classes: tannins (Tannic acid, Tel-
limagrandin, Dieckol, Chebulagic acid, Pentagalloylglucose),
biflavones (Amentoflavone, Bilobetin, Ginkgetin, Sciadopi-
tysin), favan-3-ols (3-O-galloyl-procyanidin B2, Theaflavin)
and flavonoid glycosides (Rhoifolin, Naringin, Neohesperidin,
Hesperidin, Quercetin-3-O-rutinoside, Diosmin, Kaempferol-
3-O-robinobioside, Kaempferol-3-O-rutinoside). Subcluster
C2 contains: Abietane, Anthocyanidin, Anthraquinone, Ben-
zopyrans, Chalcones, Coumarins, curcuminoids, Flavanones,
Flavanonols, Furanoflavonoids, Geranylated flavonoids, Gly-
cosylated Lignans, Glycosylated Phenylpropanoids, Iridoid
Glucoside, Isoflavanes, Isoflavanone, Isoflavones, Isoprenylated
flavan, acid Phenols, Phenylflavonoids, Phenylpropanoids,
prenylflavonoid, stilbenoids, xanthonoid.

Phenolic acids show the highest binding scores close to -
6 kcal/mol as an average. Consistently, previous docking
simulations studies suggest the possibility that plant phenolic
compounds can inhibit the responsible key factors r for the
coronavirus life cycle (Russo et al., 2020). F. Chen et al.
(2004) showed that the flavones glycosides have a potential
anti-viral activity. In this work, ten SARS-CoV viruses were
isolated from ten patients, Baicalin showed a half maximal
effective concentration ranged from 12.50 to 25.00 µg/ml at
48 hours without significantly cell viability affection. In the
same context, tetra-O-galloyl-β-d-glucose and luteolin, showed
inhibitory activity for the entry process of SARS-CoV into host
cells (Yi et al., 2004). These findings revealed that, biflavone and
tannins class present an important binding energy score, which

are somehow consistent with other empirical studies (Khalifa et
al., 2020; Ryu et al., 2010). The outcomes of our study led us
to go further steps; mainly, the study of binding profile and the
correlation between amino acid’s proteins and proposed ligands.

3.2. Analysis of screened inhibitor interacƟon

To comprehend the binding mode of flavonoids interactions
with SARS-CoV-2 enzymes, 156 phenolic compounds and 9
antiviral drugs were selected from literature. 9900 docking
assays were conducted (including the replications to validate
molecules binding energy scores). Following the ligands
docking, many scores was established for all six-target proteins.
The found results were set in rising score values order (Table S1,
Appendix A Supplementary material). To simplify this work,
the top three molecules against each target were selected (Table
1).

3.2.1 Main protease (Mpro as a target

Main protease (Mpro) is a potential pharmacological target
against SARS CoV-2. It is a vital virus enzyme since it is
indispensable for polyproteins proteolytic processing (Estrada,
2020). It is responsible for cleaving most of the polyprotein
sites and the results are non-structural proteins (nsps) that come
together in the replicase-transcriptase complex (RTC).

According to docking results (Table S1, Appendix A
Supplementary material), the highest binding energy scores
were recorded for biflavone, flavan-3-ols, flavonol glycoside,
flavanone glycoside, flavonol glycoside, flavone glycoside,
Tannins. 16.66% of tested ligands (26 phenolic compounds)
have a score value superior to Remdesivir one used as a target
control (Score Value: 8.4 kcal/mol), the top three ranked
compounds against Mpro were compiled in Table 1.

Sciadopitysin has the best binding score (-10.1 kcal/mol),
it is an active component that can be extacted from Taxus
chinensis (Gu et al., 2013) , Ginkgo biloba (Liu et al., 2018),
Torreya nucifera Ryu et al. (2010). Sciadopitysin possess a
large pharmacological activity such as phosphatase inhibitor
of regenerating liver-3 (PRL-3) (S.K. Choi et al., 2006),
inhibitor of the amyloid-beta (Aβ) peptide aggregation Gu
et al. (2013) . Scientific report of Ryu et al. (2010) ,
demonstrated that biflavonoids from Torreya nucifera exhibited
an important SARS-CoV 3CLpro inhibitory activity (62%
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Figure 1. Frequency distribution of scores classes by enzymes

at 100 µg/mL). Further, in our findings it was found
that Sciadopitysin can realize 3 hydrogen bonds (HB) with
Gly143(A): 3.18Å as a distance between residue and target,
Thr26(A): 2.82Å, Thr26(A): 2.86Å and 13 hydrophobic inter-
actions (HI); Glu166(A), Gln189(A), Arg188(A), Asp187(A),
Met165(A), HIs164(A), His163(A), His41(A), Cys145(A),
Leu27(A), Thr25(A), Asn142(A), Leu141(A). Similar studies
on 3CLpro interaction with sciadopitysin revealed a high
binding score: 9.1kcal/mol (Augustin et al., 2020) and -9.2
kcal/mol (Rana et al., 2020).

Amentoflavone, the second ranked ligand of Mpro with -
10 kcal/mol binding score is a biflavone (bis-apigenin coupled
at 8 and 3’ positions, or 3′,8′′-biapigenin) originated from
several plants including Ginkgo biloba (Lobstein-Guth et
al., 1988), Hypericum perforatum (Michler et al., 2011),
Xerophyta plicata (Williams et al., 1987). and Chamaecyparis
obtusa (Krauze-Baranowska et al., 2005). Recently, it is
proved to possess interesting activities, including protective
antioxidant effects (Y.L. Li et al., 2020) and cyclooxygenases
inhibitor (Banerjee et al., 2002). In virology, it has
been reported that amentoflavone could reduce coxsackievirus
B3 replication (Wilsky et al., 2012). Also, it showed
strong antiviral activity against HSV-1 and ACV-resistant

strains F. Li et al. (2019). Results obtained by ligplot software
disclosed that this biflavone interacts with Mpro protein
through 3 hydrogen bonds: His163(A): 3.16Å, Thr26(A): 3Å,
Thr26(A): 3.08Å, and 14 hydrophobic interactions: His41(A),
Gln189(A), Arg188(A), Gln166(A), Met165(A), Asp187(A),
His164(A), Leu141(A), Ser144((A), Thr25(A), Gly143(A),
Leu27(A), Cys145(A), Ans142(A). Rameshkumar et al. (2021)
reported that amentoflavone exhibited a binding affinity with
a score of −8.1 kcal/mol against main protease. Consistently,
additional work done on biflavonoids of Torreya nucifera
leaves showed that amentoflavone had −9.2 kcal/mol binding
affinity (Ghosh et al., 2020).

Ginkgetin a biflavonoid derived from leaves of Ginkgo
biloba (Son et al., 2005), Selaginella moellendorffii (Sun et al.,
1997), Taxus chinensis (Ruan et al., 2014), ginkgetin exhibit
numbers of pharmaceutical activities (Adnan et al., 2020)
including antiinflammatory, antibacterial, leishmanicidal and
antiplasmodial agent, antifungal, and antitumor activities (Lou
et al., 2017). This bioflavonoid is the third best ligand with -
9.8 kcal/mol, can realize 3 HB; Asn142(A): 2.78Å, Thr26(A):
3.11Å, Thr26(A):3.05Å and 16 Hydrophobic interactions;
Met165(A), Cys145(A), Gln189(A), His164(A), Arg188(A),
sp187(A) , Thr25(A), His41(A), leu27(A), Ser144(A),
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Figure 2. Heatmap clustering of phenolic compound: A by chemical classes, B by compounds.

Leu141(A), Gly143(A), His163(A), His172(A), Glu166(A),
Phe140(A). These present findings are concordant with the
work of Rana et al. (2020) reporting that ginkgetin interact
with main protease and have a potential docking binding score
(-10.19 kcal/mol). There are 8 residues are in common shown in
theWenn diagram (Figure 5); Hr26(A), His41(A), Gln189(A),
Arg188(A), Met165(A), Leu141(A), Gly143(A), Cys145(A).
All the residues were confirmed with amino acid listed in Main
protease active site (Table S2, Appendix A supplementary data).
Data presented in this table, show that the phenolic compounds
can occupy the predicted active site of the protein Mpro, and
the stability of the protein-ligand complexes is ensured by the
comparison of the stereochemical structures of these molecules
by carrying out by Ramachandran Plot (Figure 4). The latter
is used to validate the protein structure based on the φ (phi),
ψ (psi) and ω (omega) angles values. The plots revealed that
the structure of the protein remains intact even in complex
with the three molecules. The RMSD of backbone alpha
carbon atoms of Amentoflavone-MainPro, and ginkgetin main
protease complex were reported recently by Ghosh et al. (2020)
. The average RMSD values (computed from five independent
analysis) for unligated Mpro, Mpro-amentoflavone, and Mpro-
ginkgetin complexes were found to be 0.297nm, 0.248nm
and 0.246nm, respectively, suggesting that these two ligand-
complexes were stable.

3.2.2 Papain-like protease (PLpro as a target

The papain-like protease (PLpro) is an interesting antiviral
target because they are essential for the replication of coron-
aviruses (Shin et al., 2020), PLPro is a protease located in NS3
of the viral polypeptide, in addition, PLpro remove ubiquitin
and ISG15 from the proteins of the host cell to help viruses
evade innate host immune responses. Following a docking
analysis of nine commercialized drugs, results revealed that
Indinavir exhibited a higher binding score (-10.3 kcal/mol) for
that it has been selected as the best control ligand. Fifteen
phenolic compounds have a superior score values and the top
three ranked wereDieckol, Bilobetin, Amentoflavone with score
value: -12.5, -11.3 and -11.2 kcal/mol respectively (Table 1).

Dieckol, a phlorotannin, extracted from brown seaweed;
Eisenia bicyclis (Koirala et al., 2017), Ecklonia cava (Moon et al.,
2011). It is known to act as antibacterial activity (J.S. Choi et
al., 2014), UVB-photoprotective activity (Guinea et al., 2012),
anti-inflammatory (Sanjeewa et al., 2020) and cytoprotective
agents (Lee et al., 2013). The antiviral activities of dieckol
have been largely reported. Such as, in vitro antiviral
activity of this active compound against murine norovirus
(MNV) in RAW 264.7 cells has recorded EC50 of 0.90
µM (Eom et al., 2015). Additionally, it possesses an important
activity against Influenza A viruses; [H1N1], [H9N2] and
[H3N2] (Ryu et al., 2011). Park et al. (2013) demonstrated
that dieckol showed significant inhibitory against SARS-CoV
3CLpro cell-free cleavage (IC50= 2.7 µM). These previous
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Figure 4. Comparison of stereochemical structures of ligand/protein complex by Ramachandran Plot.
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Figure 5. Wenn diagram of common residues by crossing the top three ranked phenolic compounds.
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results encourage us to consider it as a potential drug candi-
date. Docking results revealed that this natural phlorotannin
interacted through 8HB; Asp164(C): 3.1Å, Glu167(C): 3.12Å,
Asp164 (A): 2.69Å, Glu161(A): 2.83Å, Met206(C) 3.21Å,
Glu167(A): 2.71Å, Arg166 (C): 3.22Å, Gly163(A):3.13Å,
Tyr273(A): 2.7Å, Moreover, this compound also formed a
large hydrophobic interactions network with the surrounding
amino acids, including 11 residues; Pro248(A), Pro247(C),
Tyr268(A), Asn267(A), Met208(C), Leu162(A), Ser170(C),
Val202( C), Glu203(C), Tyr264(A), Arg166(A). Gentile et al.
(2020) reported that dieckol was able to bind and inhibit the
3CLpro due to an extensive network of HB (binding score: -12
kcal/mol).

Bilobetin is a biflavone extracted from Ginkgo Biloba
L plants. Recently it was reported to present several
biological activities such as an antiviral (Freitas et al., 2009),
anticancer M. Li et al. (2219) , antinflammatory M. Li et
al. (2019) , antibacterial (Woldemichael et al., 2003) and
antifungal (Krauze-Baranowska & Wiwart, 2003). Moreover,
several computational works showed that bilobetin is a vigorous
drug candidate for the treatment of herpes simplex virus (HSV)
and hepatitis B virus (HBV) infection (Ramaiah & Suresh,
2013). According to results summarized in Table 1, it was
found that the estimated docking binding score for bilobetin
was (-11.3kcal/mol). Based on this value, we have further
extended our study to check the interactions network between
3CLpro and bilobetin, Gly266(A): 2.89Å, Asp164(A): 3.04Å,
Gln269 (A): 3.02Å, Leu162(A): 2.95Å represent the residues
that interact with our ligand by hydrogen bonding, Asn267(A),
Pro248(A), Thr301(A), Pro247(C), Tyr264(A), Tyr268(A),
Tyr273(A), Met (208) C, Gly163 (A) were the amino acid
having hydrophobic interactions with bilobetin. In similar
study on PLpro (PDB ID: 6W9C) (Rana et al., 2020), it has
been consistently shown that bilobetin could interact with Plpro
protein through 7 HB with the following residues: Phe 140,
Glu166, Gln 189, Thr 190 and Gln 192. It could also form
3 hydrophobic interactions (Met 165, Glu 166 and Pro 168),
recording a freen energy binding score of -10.83 Kcal/mol.

Amentoflavone, as described before, showed the third potent
affinity to 3CLpro (-11.2 kcal/mol), the 2D representation of
ligand-protein binding including HB and HI are presented
in Figure 3. Thirteen residues of 3CLpro interacted with
the ligand, 4 HB were formed between Amentoflavone and
Gly266(A): 3.01Å, Gln269(A): 2.85Å, Leu162(A): 2.82Å,
Asp164(A): 3.19Å, while, 9 amino acid residues, Tyr268(A),
Asn267(A), Pro248(A), Tyr264(A), Tyr273(A), Met208(C),
Gly163(A), Arg166(C), Pro247(C), formed hydrophobic inter-
actions. This result was approved by a recent work, elucidating
by SARS 3C-like protease inhibition assay and molecular
docking study that amentoflavone was the most potent SARS-
CoV 3CLpro inhibitor with IC50 = 8.3 µM (Abdillah & Cita,
2020). Moreover, the potential of the inhibitor amentoflavone
correlated well with binding energies −11.42 kcal/mol, In the
former, the interaction of this biflavone with the substrate-
binding pocket of 3CLpro involved 5 hydrogen bonds with:

His163 (3.154Å), Leu141 (2.966Å), Gln189 (3.033Å), Val186
(4.228Å) and Gln192 (3.898Å). Wenn diagram summarize the
intersection between catalytic residues interactions, (Figure 5),
Asp164 (A) formed hydrogen bonds with the three ligands
studied in this work. Leu162(A), Tyr268(A), Asn267(A),
Pro248(A), Tyr264(A), Tyr273(A), Met208(C), Gly163(A),
Pro247(C) formed Hydrophobic interactions. All the residues
were confirmed with amino acid listed in 3CLpro active site
(Table S2, Appendix A supplementary data). Highly Preferred
observations shown in Ramachandran Plot (Figure 4) revealed
that the interaction of ligands/enzymes do not affect the
protein stereochemistry, which allows us to conclude that these
complexes are stable and robust. In conclusion, of the results
obtained, papain like protease can be considered as a potential
target for SARS-CoV 2 inhibitors.

3.2.3 Helicase (Nsp13 as a target

The helicase is known as an enzyme that catalyze the NTP-
dependent unwinding of duplex oligonucleotides into single
strands (Kadaré & Haenni, 1997). Two sites for molecules
binding: ADP site and NCB site were defined (Gupta et al.,
2020). Here, three phenolic compounds were chosen as ligands
for each binding site. Ritonavir (-9.4 kcal/mol) and Ivermectin
(-9,7 kcal/mol) are respectively the drug’s bending energy scores
for ADP and NCP site. As shown in Figure 2-A, Tannins,
biflavones, flavonol glycosides are the most ranked ligands with
SARS-CoV 2 Helicase.

ADP site docking revealed that amentoflavone (-9 kcal/mol),
dieckol (-9 kcal/mol), bilobetin (-8.9 kcal/mol) were the
most efficient ligands (Table 1). Until the time of writing
this work, any docking model has not yet evaluated these
molecules. The present results reveal that the ADP site interacts
with amentoflavone by 3 HB; Asp534 (A): 3.72Å, Glu375
(A): 3.11Å, Glu375 (A): 3.15Å and 11 HI; Ala316 (A),
Glu540 (A), Gly538 (A), Ser289 (A), Ala313 (A), Gln537 (A),
Lys288 (A), Asp374 (A), Met378 (A), Ser535 (A), Ala312 (A).
Dieckol formed 4 HB; Arg443(A): 3.21Å, Lys320(A): 3.02Å,
Ala316(A) 2.89 Å, Glu375(A): 3.05Å and 14 HI; Thr286(A),
Gly285(A), Glu540(A), Arg442(A), Glu319(A), Ser539(A),
Leu317(A), Gly538(A), Gln537(A), Ala312(A), Ala313(A),
lys288(A), Asp374(A), Ser289(A). Bilobetin interacts with the
ADP site by 2 HB; Glu540 (A): 2.86Å, Thr286 (A): 3.25Å
and 10 HI; Ala316 (A), Gly538 (A), Ser289 (A), Ala312 (A),
Gln537 (A), Lys288 (A), Asp374 (A), Glu375 (A), Glu319 (A),
Ala313 (A) (Figure 3).

Consistent report (Jia et al., 2019) demonstrated that the
helicase NTPase activity exist in a split located between 1A and
2A motor domains and made by the following 6 amino acids;
Arg567, Gln404, Glu375, Asp374, Ser289 and Lys288. Four
basic amino acid residues (Arg337, Arg339, Lys345 and Lys347)
located at the top of nucleic acid binding channel are critical for
reducing helicase activity.

Four of Amentoflavone complex residues are conformed by
this study, which means that our docking model can reveal
a valid therapeutic approach. The nucleic acids binding site
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(NCB site) of helicase has more interesting binding energy
scores than ADP site. The top three ranked molecules
are Punigalagin, Tellimagrandin I and tannic acid with -
10.9, -10.9 and -10.8 kcal/mol respectively. All these
molecules are derivatives of natural tannins class, they are
characterized by their high ability to reach a stable cross-linked
association within different proteins by forming hydrogen
bonding interaction (Fraga-Corral et al., 2020). Results in
Figure 3 show that the best ranked hydrolysable tannins are
pedunculagin, where it interact by 11 hydrogen bonds with
SARS-CoV-2 Helicase (Nsp13) residues; Thr380(A): 2.34Å,
Asn361(A): 2.78Å, Lys139(A): 2.72Å, Glu197(A): 2.76Å,
Arg337(A): 2.93Å, Arg337(A): 3.13Å, Thr288(A): 2.93Å,
His230(A): 2.98Å, Lys149(A): 2.98Å, Pro408(A): 2.85Å,
Met378(A): 3.31Å. In addition, pedunculagin is stabilized
within the NCP site pocket with 10 hydrophobic interactions,
Asp383(A), Cys309(A), Arg339(A), Ala338(A), The214(A),
Val181(A), Asn179(A), glu142(A), Thr410(A), Try382(A). The
pedunculagin / Helicase interaction has not been studied
by subsequent work, through molecular docking analyses, a
recent study shows that pedunculagin are the best hydrolysable
tannins that can interact with the catalytic site SARS-CoV-
2-3CLpro residu (Khalifa et al., 2020). Tito et al. (2020)
suggested that a pomegranate peel extract, containing 182.31
mg Pedunculagin /g of dried peels powder, can inhibit the
the 3CL protease activity until 80%, reduce the Angiotensin-
converting enzyme 2 and Transmembrane protease serine 2
precursor gene expression level by 30% and 70% respectively
and inhibit the interaction between S protein and Angiotensin-
converting enzyme 2 until 74%. Another structurally similar
molecule, Tellimargrandin I which is found widely in Cornus
canadensis (Lavoie et al., 2017), Rosae Rugosae (Tamura et
al., 2010) and Eucalyptus globulus (Boulekbache-Makhlouf et
al., 2010) plants, was reviewed by Zheng et al. (2012) for
its wide spectra of biological activities. Here, it recorded a
binding score energy of −10.9 kcal/mol, This molecule was
reported to form a large H bond network with Lys146(A):
2.88Å, Asn361(A): 3.08Å, Thr410(A): 3.03Å, Pro408(A):
3.07Å, Pro408(A): 3.07Å, Thr380(A): 3.01Å, Asp383(A):
3.12Å, Met378(A): 2.69Å, Met378(A): 3.11Å, Arg178(A):
3.07Å, His311(A): 3.07Å, Asp315(A): 2.96Å, Arg339(A):
3.13Å, Arg339(A): 2.94Å, His230(A): 2.68Å, Thr288(A):
3.32Å, Thr288(A): 3.16Å, Thr288(A): 2.75Å. Also, it ensure
the binding mode by the intraction through 10 HI; tur180(A),
Asn179(A), Glu142(A), Lys139(A), Alu407(A), Ala379(A),
Ser310(A), Cys309(A), Val181(A), Leu227(A) (Figure 3).
In related work, Puttaswamy et al. (2020) reported that
Tellimargrandin I showed its ability of a robust interaction
with Spike protein (-8.1 kcal/mol), RdRp (-9.5 kcal/mol),
TMPRSS2 (-8.6 kcal/mol). Tannic acid is the third best ligand
recording a binding score energy of -10,8 kcal/mol, it can realize
16 hydrogen bonds; Glu375(A): 2.75Å, Asn179(A): 3.07Å,
Arg179(A): 3.01Å, Arg339(A): 2.89Å, Arg339(A): 2.87Å,
Ala336(A): 3.05Å, Ala336(A): 3.07Å, Lys139(A): 3.25Å,
Lys139(A): 3.25Å, Asn361(A): 2.88Å, Asn361(A): 2.91Å,
His230(A): 2.83Å, Val181(A): 3.01Å, Val181(A): 3.26Å,

Pro408(A): 3.10Å, Thr410(A): 3.11Å, and 13 hydrophobic
interactions; Gln537(A), Ala312(A), Ala313(A), Asp534(A),
Met378(A), Cys309(A), Thr199(A), Arg337(A), Gln197(A),
Pro335(A), Thr380(A), Gln142(A), Leu138(A), Tyr382(A),
VAl360(A), Lys146(A), Asp383(A), Tyr18(A) (Figure 3). Tan-
nic acid is polyphenolic compound with high molecular weight,
highly soluble in water. shown to possess antioxidant (Gülçin
et al., 2010), antimutagenic (S.C. Chen & Chung, 2000) and
anticarcinogenic properties (Baer-Dubowska et al., 2020). It
has been stated to present the activity against Influenza A virus,
Papilloma viruses, noroviruses, Herpes simplex virus type 1
and 2, and human immunodeficiency virus (HIV) (Kaczmarek,
2020). Moreover, in 2005, C.N. Chen et al. (2005) reported
in in vitro study that tannic acid, was the potent molecule to
inhibit the SARS-CoV-2 3CLpro with high activity expressed
by a low IC50 value (3 µM).

Wenn diagram (Figure 5) summarizes the intersection
between catalytic residues interactions. Ala316 (A), Glu540 (A),
Gly538 (A), Ser289 (A), Ala313(A), Gln537(A), Asp374(A),
Ala312(A) for Helicase (ADP site), Thr380(A), Asn361(A),
Lys139 (A), His230 (A), Pro408 (A), Met378 (A), Asp383 (A),
Cys309 (A), Arg339 (A), Val181 (A), Asn179 (A) and Thr410
(A) represent the common amino acids for Helicase (NCP
site). All the residues were confirmed with amino acid listed
in Helicase active site (Table S2, Appendix A supplementary
data), leading us to conclude that these complexes are made
in the right way. Ramachandran Plot (Figure 4) distributes
the highly preferred observations, revealing that the protein
stereochemistry is not affected by ligands/enzymes interaction,
which confirms that these complexes are stable and robust.
Taken together the obtained results, we can conclude that
Helicase could be considered as a prospective target for covid
virus inhibitors.

3.2.4 RNA-dependent RNA polymerase (RdRP

According to docking results (Table S1, Appendix A
supplementary data), for RNA site the most binding energy
scores were recorded for biflavone, flavonol glycoside, Tannins
classes. Eight phenolic compounds have a scores superior
to Ritonavir one used as a target control (Score Value: -9.5
kcal/mol). The top three compounds ranked against RNA site
(Tannic acid, punicalagin, dieckol) were compiled in Table 1.
Concerning RdRp (RTP site), Rupintrivir (-10,8 kcal/mol) was
used as a target control, 13 phenolic compounds have a scores
superior to this control. The top three ranked compounds
against RdRp (RTP site); Dieckol, Chebulagic acid and tannic
acid, were compiled in Table 1.

As for the SARS-CoV-2 RdRp (RNA site), Pedunculagin
was recorded as the best ligand among 156 tested phenolic
compounds against SARS-CoV-2 RdRp (RNA site). The
origin and well-made of Punicalagin are already cited in
helicase section, Binding interactions of the native ligand
(binding score = -10.8 kcal/mol). As shown in Figure 3, there
are 11 hydrogen bonds with Arg555(A): 2.85Å, Arg553(A):
3.16Å, Arg553(A): 3.11Å, Arg553(A): 2.94Å, Lys798(A):

N a t u r a l R e s o u r c e s f o r H u m a n H e a l t h 2022, 2, 62–78 | 72

https://doi.org/10.53365/nrfhh/143085


Majdi et al View Article Online

3.08Å, Lys551(A): 3.15Å, Tyr621(A): 2.93Å, Tyr621(A):
2.73Å, Asn691(A): 3.06Å, Thr556(A): 3.03Å, Thr556(A):
2.77Å. Additionally, other interactions were observed with
Pro620(A), Lys621(A), Asp618(A), Asp623(A), Cys622(A),
Asp760(A), Thr687(A), Ser682(A), Lys545(A). The second
ranked ligand is tannic acid (binding score = -10,6 kcal/mol)
with 32 ligand/protein interactions (Figure 3); 20 of them
were hydrogen bonds, Arg553(A): 2.91Å, Arg553(A): 2.83Å,
Thr556(A): 2.77Å, Thr556(A): 3.03Å, Thr556(A): 2.80Å,
Lys798(A): 3.00Å, Ser682(A): 3.16Å, Lys676(A): 3.00Å,
The680(A): 2.87Å, Arg555(A): 2.96Å, Ser814(A): 2.84Å,
Trp617(A): 2.90Å, Ser759(A): 2.69Å, Asp760(A): 2.88Å,
Asp760(A): 3.28Å, Tyr619(A): 2.73Å, Lys621(A): 2.94Å,
Asp618(A): 3.01Å, Asp618(A): 2.78Å, Asp618(A): 2.82Å,
and 12 Hydrophobic interactions, Arg836(A), Cys622(A),
Tyr456(A), Asp623(A), Lys551(A), Ala558(A), Val557(A),
Ser681(A), Met542(A), Asp761(A), Cys813(A), Glu811(A). As
described before, Dieckol is a majormarine polyphenol reported
for its wide antiviral activity, exhibited a docking score of -10.1
kcal/mol. Ligand interaction analysis of the Dieckol /RdRp
(Figure 3) complex shows that ligand mostly made 7 hydrogen
bonds; Tyr456(A): 2.79Å, Asp684(A): 3.11Å, Ala685(A):
3.20Å, Tyr689(A): 3.02Å, Gln573(A): 2.97Å, Arg569(A):
3.17Å, Asn497(A): 3.03Å and 10 hydrophobic interactions;
Thr556(A), Thr680(A), Ala688(A), Leu576(A), Lys500(A),
Thr687(A), Asp623(A), Ser682(A), Arg624(A), Ser681(A). The
three ligands studied in this section are tannins, this result leads
us to investigate the ability of this phenolic class to inhibit
RNA dependent RNA polymerase. Wenn diagram summarizes
the intersection between residues interactions, (Figure 5),
Thr556 (A), Asp623 (A), Ser682 (A) were the common residue.
Moreover, these amino acids were listed in the (Table S
2Appendix A supplementary data) and cited as interactive
residue in several works (Ahmad et al., 2020), in SARS-CoV-2
RNA Dependent RNA polymerase (RdRp) docking study,
Ahmad et al. (2020) Ahmad et al. (2020) showed that Thr556,
Asp623 appear among the amino acids that interact with
Carbetocin and Ser682 with Colistin, Demoxytocin and
Lanreotide, with an interesting docking score. Further, 3-O-
alpha-L-arabinopyranosyl-echinocystic acid and Genkwanin
8-C-beta-glucopyranoside were reported as potent RNA-
Dependent RNA-Polymerase inhibitors involving Thr556 and
Asp623 as hydrogen bonding residues (Khan et al., 2020).
According to the obtained results, it could be concluded that
probably the trio Thr556 (A), Asp623 (A), Ser682 (A) can be
a catalytic triad for RNA-Dependent RNA-Polymerase. The
binding mode stability was approved by the comparison of
the backbone conformation of native SARS-COV-2 enzyme
and the different molecules. Ramachandran plot showed that
the residues were present in the favoured regions and the
protein structure remains intact even in complex with the three
molecules.

For the RdRp (RTP site), Rupintrivir was the best FDA-
approved antiviral drug with binding score -10.8 kcal/mol,
15 phenolic compounds were found having superior scores.
The major part of these molecules were tannins, biflavones,

flavanone glycosides, flavan-3-ols and flavonolignans. The
top-ranked ligands are summarized in Table 1. Dieckol had
the lowest binding energy score, -12.6 kcal/mol. The molecules
were found to have 21 interactions (Figure 3); 3 HB with native
RdRp (Ser759(A) 3.30Å, Arg836(A) 2.99Å and 3.08Å), 5 HB
with RNA (u10(T) 3.01 and 3.03Å, a19(P) 3.05Å, u20(P) 3.07
and 2.69Å), 11 HI were also recorded, 2 with RNA (a11(T),
U18(P)) and 9 with RdRp residues (Ala688(A), Thr687(A),
Asn691(A), Val557(A), Ala547(A), Ile548(A), Asp845(A),
Arg858(A), Arg555(A), Lys545(A)). The second ranked
ligand is Chebulagic acid, it is a benzopyran tannin found
in Terminalia chebula (Han et al., 2006), It has been proved
to be immunosuppressive (Hamada et al., 1997), antitumor
agent (Wang et al., 2018), hepatoprotective (Kinoshita et
al., 2007), and alpha-glucosidase inhibitor (Sasidharan et
al., 2012). In 2011, Lin et al. (2011) identified chebulagic
acid and punicalagin, two hydrolysable tannins from fruits of
Terminalia chebula Retz, which exhibit their antiviral activities
by targeting HSV-1 viral glycoproteins that interact with
cell surface heparin sulphate. In 2013, Lin et al. (2013)
confirmed the antiviral activity of these tannin by exploring
the antiviral potential of these two tannins against several
viruses that use glycosaminoglycans for entry. The ligplot
results (Figure 3) show that this chebulagic acid interacts
with RdRp with 17 hydrogen bonds; 12 HB with native
RdRp (Asn691(A): 3.33Å, Ser759(A): 3.23Å, Ser759(A) :
3.11Å, Arg553(A) : 2.97Å, His439(A) : 3.13Å, Arg836(A) :
3.19Å, Arg836(A) : 2.98Å, Arg836(A) : 3.07Å, Thr556(A)
: 2.78Å, Thr556(A) : 2.70Å), 2 HB bonded to magnesium
of the protein (Tyr619(A) 3.34Å and Asp760(A) 3.17Å)
and 5 HB with RNA (u20(P) 3.06Å, u20(P) 3.11Å, u20(P)
2.95Å, a19(P) 2.84Å). Furthermore, this compound formed a
hydrophobic interactions network with the surrounding amino
acid, including 11 residues Val557 (A), Asp623 (A), Arg555
(A), Ile548 (A), Ser549 (A) and Asp618 (A). Tannic acid is
the third best ligand with -11.7 kcal/mol, it can realize 28
HB and 13 HI, as for chebulagic acid, the hydrogen bonds
are distributed in three categories: 11 RNA/ ligands, 11
RdRp/ ligands and six RdRp/ magnesium /ligands. The 11
RNA/ ligands are reported with u20(P), u10(T) and u18(P)
having different distances, u20(P): 2.33Å, 3.03Å, 3.13Å,2.90Å,
2.82Å, 2.74Å, u10(T): 2.85Å, 2.85Å, 3.02Å and u18(P) 2.78Å,
2.98Å, the 11 RdRp/ ligands are Asn691(A) 3.03Å, Ser759(A)
2.70Å, Cys622(A) 3.06Å, Lys545(A) 3.11Å, Lys545(A)
3.04Å, Lys545(A) 2.92Å, Ser814(A) 2.81Å, Asp623(A)
2.68Å, Arg553(A) 2.76Å, Arg836(A) 2.94Å, Ser682(A)
2.92Å. The 6 RdRp/ magnesium/ligands are Asp761(A):
2.33/mg101(P)/3.08, Asp761(A): 2.63/mg101(P)/3.08,
Trp800(A): 3.18/mg1005(A)/2.38, Glu811(A):
3.09/mg1005(A)/2.66, Tyr619(A): 3.34/mg1004(A)/2.61,
Asp760(A): 3.17/mg1004(A)/3.19. Moreover, Tannic acid
is stabilized by 13 HI, Lys551(A), Ala550(A), Arg555(A),
Thr556(A), Thr687(A), Val557(A), Ala688(A), Lys621(A),
Cys813(A), Asp618(A) with RdRp and a11(T), u17(P), a19(P)
with RNA (Figure 3). This mass of interactions is explained
by the fact that tannic acid has many hydroxyl groups and a
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very variable geometric structure. Wenn diagram (Figure 5)
summarizes common residues and nucleotides. It was found
that the three ligands interact with u20 (P), a19 (P) from the
RNA nucleotides and with Asn691 (A), Ser759 (A), Arg836
(A), Val557 (A), Arg555 (A) from the RdRp residues. These
findings are in agreement with the work of Singh et al. (2020)
who revealed that Remdesivir (an FDA-approved intravenous
antiviral drug) characterized by HB interaction with u20 from
RNAnucleotides and having a binding pocket residue including
Arg553, Arg555, Thr556 and Asn691, explaining its potential
inhibitory effect. Moreover, Bastikar et al. (2020) confirmed
that the docking of curcumin and allicin derivatives with RdRp
exhibited notale binding affinity and having interactions with
U10, A11 and U20 nucleotides and amino acid residues such as
Asp623, Asn691, Arg555 and Ser682 which are highly involved
in the HB with most of the tested ligands. Ramachandran Plot
(Figure 5) distribute the highly preferred observations, which
revealed that the protein stereochemistry is not affected by
ligands/enzymes interaction, thus it is confirmed that these
complexes are stable and robust.

From the obtained results, we can conclude that the
molecular docking analysis could be a good tool for virtual
screening and preliminary step towards searching for effective
drugs against selected targeted protein/ enzyme.

3.3. Drug-likeness

Pharmacophore modelling to identify drug-like compounds
is a common tool for in silico drug identification (Yang,
2010) by Drug-likeness analysis. SwissADME is a tool
provided by the Swiss institute of Bioinformatics (Daina et al.,
2017), used to predict physiochemical properties, lipophilicity,
water-solubility, pharmacokinetics, drug-likeness andmedicinal
Chemistry. According the results of drug-likeness analysis
predictions all the studied phenolic compounds have small
bioavailability score. The Abbott bioavailability score (ABS)
determines whether it passes or violates Lipinski’s rule of five.
Generally, a molecule is estimated to have more than 10% of
bioavailability (F) in case it passes Lipinski’s rule of five with
ABS of 0.55 in pH constant conditions (Martin, 2005).

In current study, Chebulagic acid has reduced bioavailability
(ABS: 0.11), Amentoflavone, Dieckol, Punicalagin, Tellima-
grandin I, Tannic acid and Punicalagin recorded a bit higher
score (ABS: 0.17), Bilobetin, Sciadopitysin, Ginkgetin revealed
a relative high bioavailability (ABS: 0.55). Nevertheless, their
bioavailability score makes them ineffectual via oral route.
Similar results are recorded with FDA SARS-Cov-2 recognized
drugs, they varied from 0.17 to 0.56 (Table S3Appendix A
supplementary data). Lipinski’s rule of 5 provides an overview
of the drug-like inhibitor candidate (Lipinski et al., 1997).
In general, phenolic compounds presenting a violation value
higher than 1 do not meet the criteria for drug-likeness (MW
less than 500, cLogP less than 5, number of hydrogen-bond
acceptors (HBA) less than 10 and number of hydrogen-bond
donors (HBD) less than 5). In fact, the study of our phenolic
compounds shows only 3 candidates with one violation:

Bilobetin, Sciadopitysin and Ginkgetin. The rest of molecules
exhibited a higher MV than that proposed by Lipinski, but
it is crucial to note that Ivermectin, Lopinavir, Remdesivir,
Ritonavir, Rupintrivir, Tipranavir, the most probable drugs
according clinical studies, present similar MW :875.09, 628.80,
602.58, 720.94, 598.66, 602.66 DA respectively (Table 2).
Furthermore, according to Veber’s rules (Veber et al., 2002),
satisfactory bioavailability is more suitable for compounds with
≤10 rotatable bonds (RB) and topological polar surface area
(TPSA) ≤ 140 Å2. Considering these rules, the predicted
proprieties point to that among nine drug-like inhibitor
candidates, 8 compounds with TPSA > 140 Å2 fulfill the
Veber’s rules and only Tannic acid with 31 RB do not fulfill the
rules. PAINS (Pan Assay Interference Compounds) (Baell &
Holloway, 2010) evaluation revealed that only Amentoflavone,
Dieckol, Bilobetin, Sciadopitysin and Ginkgetin do not present
any PAINS alert. Punicalagin, Tellimagrandin I, Tannic acid
and Chebulagic acid present one alert, this distribution is a
function of chemical class. In fact, biflavones do not present any
resemblance to PAINS, but tannins can be classified as PAINS.
This tendency is also observed with another medicinal chemistry
model, biflavones were not determined to have any Brenk
fragments (Brenk et al., 2008). Similar trend has been proved
by previous study (Sayed et al., 2020), in which authors confirm
that biflavones mainly amentoflavone have an efficient drug-
like properties, based on their pharmacokinetics parameters
(e.g., absorption and bioavailability), and Lipinski’s rules of 5
obedience (Table 2).

4. CONCLUSION

Taken together all the attained results, we can concluded
that the screening of 9900 ligands / SARS-Cov-2 Proteins
complex through docking analysis is a promising way to identify
possibly effective drugs against COVID-19. By studying the
interactions of 33 phenolic classes with six viral vital enzymes
(Main protease, Papain-like protease, Helicase (ADP and NCP
sites) and RNA-dependent RNA polymerase (RNA and RTP
sites)). biflavone and tannin classes present an important
binding energy score. Further investigation shows that a
range of 156 drug candidates was tiered according to their
binding energy scores for each protein. The top three ranked
phenolic compounds were subject of residue/molecules moieties
interaction analyses. The interaction results revealed that the
active sites of each enzyme were conserved with three common
residues at least. The stereochemistry of complexes analysed by
Ramachandran plot proved that ligands pose do not affect the
native enzyme structure. The section of docking screening gave
nine phenolic compounds as a potential SARS-Cov-2 inhibitor
which are classified as following: 4 biflavones (Amentoflavone,
Sciadopitysin, Bilobetin, Ginkgetin and Dieckol) and 5 tannins
(Punicalagin, Tellimagrandin I, Tannic acid and Chebulagic
acid). A Drug-likeness analysis was realized to evaluate the
ability of these candidates to be a recognized as drugs against
covid-19. Only the flavone class shows efficiency by one
violation of Lipinski’s rules of five, which in turn is consistent
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with similar results observed for medicinal chemistry by PAINS
and Brenk models. Clearly, all observations of this study point
to a further required works in order to examine deeply the
possibility of using these molecules, which could be subjected
for several pre-clinical studies.
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